www.peopleofthechange.com
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

New biocontainment strategy controls spread of escaped GMOs

December 2, 2018
AlgaeIndustryMagazine.com

Ryuichi Hirota (left) and Akio Kuroda developed an extra-safe biocontainment strategy for genetically engineered cyanobacteria. Image credit: Ryuichi Hirota

Science Daily reports that Hiroshima University (HU) researchers successfully developed a biocontainment strategy for genetically modified organisms. Their new method prevents genetically modified cyanobacteria from surviving outside of their test environment, enabling ways to more safely research the effects of GMOs. Their results were published in ACS Synthetic Biology.

The applications of bioengineered microbes have appeared in a number of fields, including agriculture and energy production. Engineered microalgae, for example, can help clean up oil refinery wastewater and work as a source of biofuel. However, like many other GMOs, the safety of engineered microalgae is uncertain.

“Engineered microbes could dominate some environment or attack an organism indigenous to it, and that could negatively affect biodiversity,” Ryuichi Hirota said, who is the primary author of this paper and an Associate Professor in the Graduate School of Advanced Sciences of Matter at HU. “Additionally, microalgae are usually cultivated in ponds and other bodies of water open to the environment. To overcome that risk, one strategy is to apply a biocontainment system in microalgae.”

Biocontainment strategies seek to stop outgrowth of GMOs in a specific area, like outside of the lab environment. Dr. Hirota was particularly interested in “a passive strategy,” the aim of which is to alter a microbe’s nutrient requirements. By engineering a microbe to depend on a certain nutrient that does not exist outside of its home environment, then it will not survive if it escapes this environment.

In his case, the microbe is microalgae, and the nutrient is phosphite.

At the core of phosphite is phosphorus, a crucial element in living things. Phosphorus also makes up a different molecule called phosphate, which makes up the backbone of DNA and the intracellular energy currency molecule ATP. Phosphate is abundant in the natural world. Phosphite, on another hand, is not.

Thanks to an enzyme called phosphite dehydrogenase, a small number of microbes can metabolize phosphite into phosphate. While organisms require phosphorus, many cannot use phosphite due to lacking this enzyme. Dr. Hirota took advantage of this naturally occurring process to create a biocontainment process for E. coli. Last year, he and his group genetically edited a phosphite dehydrogenase gene into E. coli bacteria and removed its ability to take up phosphate.

In this study, the group applied this system in microalgae, to a kind of cyanobacteria that lives in water. Like E. coli, microalgae have a phosphate transport process. Stopping its dependency on phosphate and moving it strictly to phosphite, though, took another step: disrupting two phosphate transporter genes and not just one. His group was successful. The viability of engineered microalgae rapidly diminished when it tried to grow without phosphite.

However, “escaped mutants are always a possibility,” Dr. Hirota said. With that, they tested the effectiveness of their biocontainment strategy by measuring how many strains of microalgae adapted to rely on phosphite. Over the course of three weeks, the team observed zero colonies. The escape frequency was at least three magnitudes lower than NIH laboratory standards, which is less than one mutant cell per 100 million normal cells, and is comparable to other cyanobacteria containment strategies currently in use.

The next step in evaluating this strain of microalgae will go beyond the Petri dish. “I would like to test it in an open but closed model ecosystem,” Dr. Hirota said. That is to say, test the strain in an artificial pond, but still within a controlled setting.

“Using GMOs is a balance of risk and benefit,” he concluded. “They have potential, but at the same time, they have a health risk. If we don’t have any techniques that allow us to research them more safely, we do not have a choice. We need to develop such biosafety systems so we can study GMOs more responsibly.”

Read More

More Like This…

Copyright ©2010-2020 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
When there is a combination of population increase, wastewater discharge, agricultural fertilization, and climate change, the cocktail is detrimental to humans and animal...
The 2019 Algae Biomass Summit, the largest algae conference in the world, kicked off Tuesday in Orlando, Florida, with opening keynote presentations and plenary discussio...
Kim Kaplan reports for the U.S. Department of Agriculture’s Agricultural Research Service, in Baton Rouge, Louisiana, that a microscopic algae could provide a complete an...
In collaboration with fellow researchers, chemists at the Technical University of Munich (TUM) have developed a process that, according to initial calculations, can facil...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
The Los Alamos Reporter highlights new research by New Mexico Consortium scientist, Joseph Msanne, along with colleagues Shawn Starkenburg and Juergen Polle, that looks a...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
Alice Klein reports that a skin patch made of living blue-green algae speeds up wound healing in mice and may help to treat chronic wounds in people with diabetes, accord...
How did plants make the evolutionary jump from water to land? Scientists think that green algae are their water-living ancestors, but we are not sure how the transition t...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Baillargues, France’s Microphyt, a leading company in microalgae-based natural solutions for nutrition and well-being, has announced a fundraising of €28.5 million (US$32...