Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Metabolically engineering algae to synthesize astaxanthin

December 16, 2019
AlgaeIndustryMagazine.com

Estimated metabolic changes induced by astaxanthin production. Credit: Kobe University

Aresearch group led by Professor Hasunuma Tomohisa of Kobe University’s Engineering Biology Research Center have succeeded in synthesizing the natural pigment astaxanthin using the fast-growing marine cyanobacterium Synechococcus sp. PCC7002.

This process required light, water and CO2 to produce the valuable antioxidant astaxanthin from the cyanobacterium host at a faster rate and with lower contamination risks than previous methods of biologically synthesizing this useful substance. In addition, dynamic metabolic analysis revealed that astaxanthin production enhances the central metabolism of Synechococcus sp. PCC7002.

The results of this study were first published in the international journal “ACS Synthetic Biology” on October 25, 2019.

Astaxanthin (pink carotenoid) is the strongest antioxidant among known carotenoids. It is used as a natural coloring in aquaculture, cosmetic, nutrition and pharmaceutical industries among others, due to its enhancement of immune responses and anti-inflammatory properties.

Currently, the majority of commercial astaxanthin is chemically synthesized from petrochemicals. This enables large amounts to be produced in order to meet demand. However, there are concerns about the safety of consuming astaxanthin synthesized from petrochemicals, and as a result the demand for natural astaxanthin is increasing.

The freshwater alga Haematococcus pluvialis produces astaxanthin naturally. For commercial astaxanthin production, Haematococcus requires a complex 2-stage process. After the first growth stage, Haematococcus is placed under inductive stress conditions such as nitrogen starvation or high light irradiation. This induces the plant to form hematocysts and produce astaxanthin in the second stage.

The current study sped up the growth rate and reduced the contamination risks in biosynthesizing astaxanthin. The researchers succeeded in producing astaxanthin using the fast-growing marine blue-green algae species, or cyanobacterium, Synechococcus sp. PCC7002 as a host. This algae does not inherently produce astaxanthin, however by integrating β -carotene encoding genes into the Synechococcus, the expressed genes only require water, light and CO2 in order to produce astaxanthin. This single stage method does not require subjecting the cells to stress conditions and enabled astaxanthin to be produced in a shorter time period compared to the Haematococcus method. In addition, it is proposed that the rich salt concentration in Synechococcus could also lower the risk of contamination.

Overall, this study showed that the modified Synechococcus sp. PCC7002 is a promising host for producing astaxanthin biologically through photosynthesis. This could be investigated further by trying to synthesize various other useful substances utilizing Synechococcus sp. PCC7002.

In addition, it is hoped that the dynamic metabolic profiling method developed during this research could be utilized to improve understanding of metabolic processes in microorganisms, plants and animals.

More Like This…

Copyright ©2010-2020 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Algae and corals have been leaning on each other since dinosaurs roamed the earth, much longer than had been previously thought, according to new research led by scientis...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
Paris-based Solabia Group (“Solabia”) has acquired Algatech Ltd., a global leader in the development, cultivation and commercialization of ingredients delivered from micr...
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
Milenio.com reports that BiomiTech, a Mexican company, won a prestigious innovation award for its air purification system at the Contamination Expo Series 2018 held in Bi...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
Maiki Sherman, traveling with New Zealand Prime Minister Jacinda Ardern, reports for 1News Now that new innovation partnerships have been signed between New Zealand and J...
The 2019 Algae Biomass Summit, the largest algae conference in the world, kicked off Tuesday in Orlando, Florida, with opening keynote presentations and plenary discussio...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...
Bloomberg News reports that a newly approved Chinese drug for Alzheimer’s will start clinical trials in the U.S. and Europe this year as the country’s first novel therapy...