Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Increasing oil production from algae

April 19, 2017
AlgaeIndustryMagazine.com

Figure 1: Comparison of lipid production with previous studies (click image to enlarge). Credit: Kobe University

PhysOrg reports that the mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team. This discovery could contribute to the development of biofuels. The findings were published on April 4 in Scientific Reports.

The research was carried out by a group led by Professor Hasunuma Tomohisa and Academic Researcher KATO Yuichi, both from the Kobe University Graduate School of Science, Technology and Innovation.

Many species of algae are capable of producing large amounts of oil (lipids), but this is the first time that researchers have captured the metabolic changes occurring on a molecular level when lipids are produced in algae cells.

Figure 2: Differences in cell contents based on presence of saltwater (click to enlarge). Credit: Kobe University

Focusing on marine microalgae, Professor Hasunuma’s group found that Chlamydomonas sp. JSC4, a new species of green alga harvested from brackish water, combines a high growth rate with high levels of lipids. The research team developed an analysis method called “dynamic metabolic profiling” and used this to analyze JSC4 and discover how this species produces oil within its cells.

Professor Hasunuma’s team incubated JSC4 with carbon dioxide as the sole carbon source. Four days after the start of incubation, over 55% of cell weight consisted of carbohydrates (mainly starch). When saltwater comprised 1-2% of the incubation liquid, the team saw a decrease in carbohydrates and increase in oil, and seven days after the start of incubation over 45% of cell weight had become oil.

JSC4 has a high cell growth rate, and the lipid production rate in the culture solution achieved a speed that greatly surpassed previous experiments. At the start of the cultivation period starch particles were observed in the cells, but in saltwater these particles vanish and numerous oil droplets are seen (figure 1).

Using dynamic metabolic profiling, the group found that the sugar biosynthesis pathway (activated when starch is produced) slows down, and the pathway is activated for synthesizing triacylglycerol, a constituent element of oil. In other words, the addition of seawater switched the pathway from starch to oil production. They also clarified that the activation of an enzyme that breaks down starch is increased in saltwater solution.

The discovery of this metabolic mechanism is not only an important biological finding, it could also be used to increase the production of biofuel by improving methods of algae cultivation. Based on these findings, the team will continue looking for ways to increase sustainable oil production by developing more efficient cultivation methods and through genetic engineering.

Read More

More Like This…

Copyright ©2010-2020 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...
In collaboration with fellow researchers, chemists at the Technical University of Munich (TUM) have developed a process that, according to initial calculations, can facil...
When there is a combination of population increase, wastewater discharge, agricultural fertilization, and climate change, the cocktail is detrimental to humans and animal...
Milenio.com reports that BiomiTech, a Mexican company, won a prestigious innovation award for its air purification system at the Contamination Expo Series 2018 held in Bi...
New Food Magazine reports that a new Danish project called “Microalgae for Food” has received DKK 750,000 (approximately $110,000US) in co-financing from the Ministry of ...
The 2020 Algae Biomass Summit is going virtual. In light of the continued uncertainty around the global COVID-19 outbreak the Algae Biomass Organization’s board of direct...
Marine ingredient start-up, Yemoja, Ltd., has created a next-gen platform for cultivating customized, pharmaceutical grade microalgae on demand. Founded three years ago b...
Jack Perry reports for the (Rhode Island) Providence Journal that Matthew Bertin, an assistant professor of biomedical and pharmaceutical sciences at University of Rhode ...
Reebok has introduced a plant-based shoe that is in class with the best performance running sneakers on the market. The Forever Floatride GROW is the latest example of Re...