Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

A better understanding of green algae’s evolution

July 20, 2017
AlgaeIndustryMagazine.com

Vera Engelbrecht and Thomas Happe made a significant step toward understanding the evolution of green algae. Credit: ©RUB, Marquard

Anew jigsaw piece in the evolution of green algae has been identified by researchers at Ruhr-Universität Bochum, together with colleagues from Max Planck Institute in Mülheim an der Ruhr, in Germany. They analyzed the hydrogen-producing enzyme of a phylogenetically old alga. The team, headed by Vera Engelbrecht and Prof Dr. Thomas Happe from the research group Photobiotechnology, in Bochum, outlined their results in the journal “Biochimica et Biophysica Acta.”

Hydrogen-producing enzymes, so-called hydrogenases, have originally occurred in numerous bacteria. Green algae, too, contain such enzymes, using them for the light-driven generation of hydrogen. “The origins of this enzyme in algae had long been a mystery,” says Vera Engelbrecht. “We have now analyzed a link in evolutionary history of hydrogenases that had previously been missing.”

Algae, which are relatively young in evolutionary terms, contain specialized hydrogenases that show significant differences to the original varieties in bacteria. They are smaller and have a specific surface used for docking to the cell’s photosynthesis machinery. To this end, they bind to ferredoxin, a molecule that mediates electron transfer. Thus, they are able to produce hydrogen using light energy.

The phylogenetically old alga Chlorella variabilis has likewise the ability for light-driven generation of hydrogen. The researchers from Bochum and Mülheim isolated and characterized the Chlorella hydrogenase. Unlike in young algae, it shares many characteristics with the original bacteria enzyme and is unable to bind to the electron carrier ferredoxin.

“We found the results surprising,” said Dr. Happe. “Chlorella appears to still have an original metabolic pathway, which has changed completely in phylogenetically younger algae.”

The question why the more recent algae have developed a specialized hydrogenase in order to dock to photosynthesis via ferredoxin remains to be answered. “We are currently attempting to identify the precise metabolic connection of chlorella hydrogenase and to detect photosynthetic protein complexes in the organism that are as yet unknown,” says Dr. Happe.

Read More

More Like This…

Copyright ©2010-2020 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
When there is a combination of population increase, wastewater discharge, agricultural fertilization, and climate change, the cocktail is detrimental to humans and animal...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
Researchers at the University of California San Diego and the University of Cambridge have 3D printed coral-inspired structures that are capable of growing dense populati...
Tavelmout Biofarm (TVMB), a Bruneian subsidiary of Tabérumo Corporation — a pioneer in the large-scale cultivation of spirulina using photobioreactors — has launched thei...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...
Biotechnologists from Aarhus University have demonstrated how the rare properties of an atypical light-dependent enzyme can be used with a photo-bio-catalytic continuous ...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
Cyanotech Corporation, a Kailua Kona, Hawaii-based leader in high-value nutrition and health products made from algae, has announced financial results for the first quart...
Marine ingredient start-up, Yemoja, Ltd., has created a next-gen platform for cultivating customized, pharmaceutical grade microalgae on demand. Founded three years ago b...
Laura Sanders reports in Sciencenews.org that using algae as local oxygen factories in the brain might one day lead to therapies for strokes or other damage from too litt...