Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Algal discovery aids cancer research

October 19, 2014
AlgaeIndustryMagazine.com

MSU researchers have discovered an algal "snooze button," potentially improving biofuels and offering insight on the early stages of cancer.  Photo by G.L. Kohuth

MSU researchers have discovered an algal “snooze button,” potentially improving biofuels and offering insight on the early stages of cancer. Photo by G.L. Kohuth

Ateam of Michigan State University algae researchers have discovered a cellular “snooze button” that has the potential to improve biofuel production and offer insight into the early stages of cancer. The discovery that the protein CHT7 is a likely repressor of cellular quiescence, or resting state, is published in the current issue of the Proceedings of the National Academy of Sciences. This cellular switch, which influences algae’s growth and oil production, also controls cellular growth – and tumor growth – in humans.

Christoph Benning, MSU professor of biochemistry and molecular biology, and his colleagues, unearthed the protein’s potential while looking for ways to improve algae’s capacity as a biofuel. Its application in cancer research was a surprise finding that is now leading Benning’s lab in a new direction.

“Algae provide us with model organisms that rival, or possibly exceed, traditional yeast models,” Benning said. “It’s quite difficult to grow many types of human cells in test tubes. However, we can readily grow, manipulate and study algae, which have the genomic repertoire that make them relevant in their capacity to drive advances in human medicine.”

The discovery was made while tackling the conundrum of algae’s vexing inverse relationship with growing mass versus producing oil. When algae are awake, they grow; when they’re asleep, they produce oil.

“Producing oil is part of the cells’ survival strategy when it’s under stress,” said Chia-Hong Tsai, doctoral candidate with MSU’s Department of Energy Plant Research Laboratory and Department of Plant Biology and co-author. “They go into quiescence to conserve energy and nutrients. That’s when they produce the equivalent of vegetable oil. But to convert them into truly viable biofuel producers, we need them to grow and produce oil simultaneously.”

The secret for making this happen was CHT7 – the gatekeeper that cues cells to wake up or fall asleep. By engineering this protein, Benning’s team might one day develop an organism that can’t figure out how to doze and is always active.

This discovery gives scientists a promising new model to study tumor suppression and growth. “For cancer research, it’s a new paradigm,” Benning said. “The switch that tells an organism to grow, or possibly, go rogue and grow uncontrollably – that’s exactly what we want to understand. That is the first step of tumor growth.”

Because quiescent cells are found in many plants and animals, it’s a model that can provide important insights into the regulation of cellular behavior in organisms, such as us humans, in ways that traditional yeast models simply can’t replicate.

Additional MSU team members on this project included Jaruswan Warakanont, plant biology doctoral student; Tomomi Takeuchi, biochemistry and molecular biology doctoral student; Barbara Sears, professor emeritus of genetics and plant biology; and Eric Moellering, former doctoral candidate of biochemistry and molecular biology, now at Synthetic Genomics Inc.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
New Food Magazine reports that a new Danish project called “Microalgae for Food” has received DKK 750,000 (approximately $110,000US) in co-financing from the Ministry of ...
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
JapanNews.com reports that Euglena Co., a Tokyo-based maker of nutritional supplements, is spending ¥5.8 billion ($5.3 million USD) on building a test refinery that conve...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
Kim Kaplan reports for the U.S. Department of Agriculture’s Agricultural Research Service, in Baton Rouge, Louisiana, that a microscopic algae could provide a complete an...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
The 2020 Algae Biomass Summit is going virtual. In light of the continued uncertainty around the global COVID-19 outbreak the Algae Biomass Organization’s board of direct...