Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Money

Venter Institute-led team gets $10.7M for diatom research

October 4, 2017
AlgaeIndustryMagazine.com

Scientists, led by the La Jolla, CA-based J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, were recently awarded a 5-year, $10.7 million grant by the United States Department of Energy, Office of Science, Biological and Environmental Research (BER), BER Genomic Science Program, to optimize metabolic networks in diatoms – model photosynthetic microalgae. The aim of this work is to substantially increase lipid production, enabling next-generation biofuels and bioproducts.

“Fusing novel, large-scale genome manipulation with metabolic modeling through design-build-test cycles, and detailed physiological characterization represents an exciting leap forward in tailoring organisms for maximum productivity of biofuels and other high value products,” says project principal investigator, Andrew Allen, Ph.D.

Building on prior synthetic biology and diatom research, methodologies will be developed and optimized for introducing and transplanting new biological functions into diatoms, which are a globally abundant class of algae. Initial modeling exercises will guide targeted genetic manipulations, associated systems biology experiments, and result in iterative network and genome-scale cellular modeling.

Optimization of approaches for genome-scale engineering and implementation of reprogrammed biological function, such as replacement of storage carbohydrates with storage lipids, will occur in parallel. Dr. Allen added, “We hope to overcome currently limiting efficiency bottlenecks to promote production of high-value, fuel-related metabolites.”

Based on the photosynthetic efficiency and growth potential of microalgae, it is estimated that annual oil production of greater than 30,000 liters, or about 200 barrels of microalgal oil per hectare of land may be achievable in mass culture of oil-rich algae. This is 100-fold greater than that of soybeans, a major feedstock currently used for biodiesel in the U.S. Genome-scale engineering provides a method for substantially raising this already promising production ceiling.

Project team members also include Chris Dupont, Ph.D., J. Craig Venter Institute; Graham Peers, Ph.D., and Wen Zhou, Ph.D., Colorado State University; Jamey D. Young, Ph.D., Vanderbilt University; and Karsten Zengler, Ph.D., and Bernhard Ø Palsson, Ph.D., University of California, San Diego.

This award was made in response to solicitation DE-FOA-0001650, Biosystems Design to Enable Next-Generation Biofuels and Bioproducts.

Founded by J. Craig Venter, Ph.D., the JCVI not-for-profit research institute is home to approximately 200 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
David Erickson writes in the (Montana) Missoulian that Clearas Water Recovery, a Missoula tech company formed eight years ago, has developed a patented process to use alg...
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
Will Yeates reports in DailyPlanet.com that an urban “algae farm” producing low-carbon protein and bio-fuel is one of the highlights on show this week at the future energ...
Carlsbad-based Surftech, a stand-up paddle (SUP) and Surfboard manufacturing company has announced its collaboration with BLOOM, a materials development company, to devel...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
Sex self-destruction represents a fascinating new scientific mystery that includes climate chaos, ghost forests, temperature spikes, fierce storms, colossal nutrient coll...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Ali Morris writes in dezeen.com that Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely rep...
The Natural Algae Astaxanthin Association (NAXA), headquartered in Spring, Texas, has announced that Chile-based Atacama Bio is its newest executive member. Atacama Bio h...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...