[ad#PhycoBiosciences AIM Interview]

Research

Robert Hebner, director of UT's Center for Electromechanics (CEM), conducts research in a large algae growth demonstration facility for biofuels.

Robert Hebner, director of UT's Center for Electromechanics (CEM), conducts research in a large algae growth demonstration facility for biofuels.

UT Studies Energy Benefits of Algae Fuels

July 22, 2012
AlgaeIndustryMagazine.com

Arecent study at the University of Texas at Austin demonstrates that it is theoretically possible to produce about 500 times as much energy from algae fuels as is needed to grow the fuels. However, limited by existing technology, the researchers found in a separate study that their algae growing facility is getting out about one-five hundredth as much energy as it currently puts in to grow the fuels.

“The search for cost-effective biofuels is one of the noble endeavors of our time, and these papers shed insight on where the boundaries are in algae research,” said Robert Hebner, a professor in the Cockrell School of Engineering and director of the Center for Electromechanics. “One of the responsibilities of a top research university is to discover and explain what the boundaries are so we can innovate within those boundaries or create ways to expand them.”

Michael Jochum of AlgEternal shows the bioreactor they designed for UT’s research team that can produce 5000 gallons per day at peak capacity.

Michael Jochum of AlgEternal shows the bioreactor they designed for UT’s research team that can produce 5000 gallons per day at peak capacity.

The findings were announced in three new studies published in June and co-authored by Hebner, Cockrell School Assistant Professor Michael Webber and researcher Colin Beal. The studies add important context to the viability of algae, but researchers must first figure out how to mass-produce the green source inexpensively.

Numerous studies have focused on the energy efficiency of algae, but limited comprehensive data is available. Present studies consider the cost, water intensity and resource constraints faced by algal biofuel production, in addition to the energy efficiency.

“These results are critical in the public policy domain,” Webber said. “As we try to balance the use of energy and water for our future, it is important to base our decisions on what technology will permit us to do and at what cost. Otherwise we risk serious negative impacts on our quality of life. This work is an important contribution to the needed discussion.”

Open Algae’s oil separation unit allows UT researchers to travel to a remote algae pond and extract oil on location

Open Algae’s oil separation unit allows UT researchers to travel to a remote algae pond and extract oil on location

Building on earlier work, the university researchers developed a theoretical understanding of the limits for the energy returned for the energy invested in algae growth. The theoretical limits were quite positive but require technology significantly ahead of current practice.

“We expect this comprehensive work will help provide a focus for current and future work. If progress is to be made, we need to have a clear understanding of the constraints we are facing, and how it might be possible for algae to contribute to our energy demands,” Beal said.

The research team also studied the university’s algae growth facility at the J.J. Pickle Research Campus to identify all of the energy inputs to a real process, such as using electricity to run algae pumps and energy for chemical processing and water transport. Using this information and working with the City of Austin, they showed that combining algae growth with a sewage treatment facility is one approach to getting a positive energy return with existing technology. Algae get nutrients from phosphorus and nitrogen — chemical elements that are abundant in water treatment plants and must be removed from wastewater during treatment processing.

By combining the two processes, the system produced 1½ times more energy than was needed to grow algae.

Today, gas and oil produce 30 to 40 times more energy than is needed to get the fuels out of the ground.

“But it’s getting harder and harder to get fossil fuels out of the ground,” Hebner said.  “With algae, the theoretical maximum is extremely positive.”

With more than 3,000 specimens, The University of Texas at Austin is home to the largest and most diverse algae collection in the world. Last fall the Austin startup AlgEternal Technologies augmented the university’s algae program by installing a growth demonstration facility on the campus. The university program provides public and private research partners access to facilities for analyzing, growing, harvesting and processing algae.

A second company, OpenAlgae, is developing algae-specific processing technologies with the university to enhance the economics of oil production from algae. OpenAlgae provided partial funding for the studies, which will appear in the journals Energies, Energy and Water Environment Research.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
Benedict O’Donnell writes in the EU Research and Innovation magazine, Horizon, about research being developed on seaweed as a biological, environmentally friendly, sustai...
Tafline Laylin writes for Inhabitat.com about the elegant solution that Romanian designer Alexandru Predonu has conceived that uses solar energy to power a rotating desal...
Karen Phillips writes for deeperblue.com that algae are the alveoli in the ocean lungs of our planet, vitally important to the health of the seas as home, food source, sa...
Algae.Tec has announced that, with the completion of the US$1M injection by Gencore, their nutraceutical plant upgrade in Cummings, Georgia, is progressing ahead of sched...
Jason Smith reports for undercurrentnews that Kentucky-based Alltech is willing to invest in overseas algae production plants closer to its feed customers if demand for i...
Algatechnologies Ltd (Algatech), of Kibbutz Ketura, Israel, has become part of the FoodConnects consortium, as winner of a pan-European competition for the Food4Future pr...
Kailua-Kona, Hawaii-based Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and Living Ink Technologies of Den...
For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for r...
Algatech has announced the opening of Algatech Inc., a New York City-based subsidiary created to serve the North American market. The company has appointed Ken Seguine to...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...