[ad#PhycoBiosciences AIM Interview]

Innovations

UT scientists design synthetic trees to secrete algal biofuel

April 8, 2013
AlgaeIndustryMagazine.com

Dr. Halil Berberoglu in the laboratory with a sample of algae for biofuel production

Dr. Halil Berberoglu in the laboratory with a sample of algae for biofuel production

Dr. Halil Berberoglu, an assistant professor in the Cockrell School of Engineering at The University of Texas at Austin, is leading a research effort to produce renewable biofuel using solar energy. To address the energetic and economic challenges of conventional algal biofuel production, Dr. Berberoglu, together with his Ph.D. student Thomas Murphy, have envisioned a novel system that mimics the way we obtain sap from a maple tree. In this case, instead of harvesting maple syrup, we would harvest biofuels from a synthetic tree.

In this concept, algae cells are grown as photosynthetic biofilms on porous surfaces that keep them hydrated and provide them with the nutrients they need for growing to maturity. Once the biofilm is matured, the supply of certain nutrients is stopped and the growth of cells is inhibited. At this point, the algae are provided with the necessary inputs to carry on photosynthesizing and secreting out energy dense molecules, such as free fatty acids. These are carried away from the cells in small channels mimicking the veins in plants and concentrated using evaporation-driven flows.

These concentrated energy-dense molecules can then be converted to a wide variety of biofuels. Once the algal biofilm reaches the end of its productive life over several months, it is removed, a new biofilm is grown to maturity, and the cycle continues. In this way, the available solar energy, water, and nutrients are directed more towards the production of fuel precursors and less towards growth, achieving a higher solar energy conversion and resource utilization efficiency.

Dr. Berberoglu and Ph.D. student Thomas Murphy grow and evaluate the performance of algal biofilms in special chambers where they can control the environmental inputs.

Dr. Berberoglu and Ph.D. student Thomas Murphy grow and evaluate the performance of algal biofilms in special chambers where they can control the environmental inputs.

Some of the initial work on developing algae biofilm cultivation was previously performed at Dr. Berberoglu’s laboratory by Dr. Altan Ozkan, a former Ph.D. student of Dr. Berberoglu and now an assistant professor at Bahcesehir University in Istanbul, Turkey. Drs. Berberoglu and Ozkan cultivated algae as biofilms on impervious surfaces under surface flow of nutrients in the laboratory. Moreover, they studied the fundamental aspects of algal cell attachment and formation of algal biofilms.

In the current work, Dr. Berberoglu and Mr. Murphy are focusing on the transport of nutrients, metabolites, light and thermal energy in the photosynthetic biofilms. For this Mr. Murphy has been developing computer models that couple light and mass transport with cellular kinetics for understanding and optimizing how these affect the productivity of the synthetic tree.

Dr. Berberoglu and Mr. Murphy are working with NASA to design synthetic trees using photosynthetic biofilms, which use much less water and energy than conventional photobioreactors.

Dr. Berberoglu and Mr. Murphy are working with NASA to design synthetic trees using photosynthetic biofilms, which use much less water and energy than conventional photobioreactors.

To further this technology, Dr. Berberoglu is also collaborating with Dr. Alexandre da Silva (UT ME) studying evaporative-driven transport of nutrient solutions in porous media, with Dr. Matt Posewitz of Colorado School of Mines who is genetically engineering algal strains to secrete the desired bioproducts, and with Drs. Lee and Brad Bebout of NASA Ames who are ecological experts working on improving the diversity of species in the photosynthetic biofilms.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
On September 25, 2014, a photobioreactor for the cultivation of algae was officially unveiled during a seminar at Thomas More University College in Mechelen, Belgium. Und...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Algae “red tide” events often create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteri...
Rich McEachran writes in the Guardian that, in the process of surfacing a road, layers of asphalt – which is composed mostly of bitumen (a byproduct of crude oil distilla...
OriginClear Inc. and partner AlgEternal have announced that, based on AlgEternal’s field tests, they believe their pure algae concentrate, harvested with OriginClear tech...
Using a newly devised technique, researchers at the Scottish Association for Marine Science (SAMS) have examined microalgae strains in the Culture Collection of Algae and...
Michigan State University (MSU) and PHYCO2, an algae growth and CO2 sequestration company based in Santa Maria, CA, have entered into a partnership to develop algae techn...
Modesto, California-based G3 Enterprises, Inc. has entered into an agreement with Commercial Algae Professionals (CAP) to represent their unique drying technology in the ...
Glass tubing manufacturer SCHOTT, and Algatechnologies Ltd. (Algatech), a commercial algae producer and one of the largest manufacturers of natural astaxanthin, have part...
Researchers at Arizona State University (ASU) and engineers at Salt River Project (SRP), one of the nation's largest public power utilities, are conducting joint research...
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...