Innovations

UT scientists design synthetic trees to secrete algal biofuel

April 8, 2013
AlgaeIndustryMagazine.com

Dr. Halil Berberoglu in the laboratory with a sample of algae for biofuel production

Dr. Halil Berberoglu in the laboratory with a sample of algae for biofuel production

Dr. Halil Berberoglu, an assistant professor in the Cockrell School of Engineering at The University of Texas at Austin, is leading a research effort to produce renewable biofuel using solar energy. To address the energetic and economic challenges of conventional algal biofuel production, Dr. Berberoglu, together with his Ph.D. student Thomas Murphy, have envisioned a novel system that mimics the way we obtain sap from a maple tree. In this case, instead of harvesting maple syrup, we would harvest biofuels from a synthetic tree.

In this concept, algae cells are grown as photosynthetic biofilms on porous surfaces that keep them hydrated and provide them with the nutrients they need for growing to maturity. Once the biofilm is matured, the supply of certain nutrients is stopped and the growth of cells is inhibited. At this point, the algae are provided with the necessary inputs to carry on photosynthesizing and secreting out energy dense molecules, such as free fatty acids. These are carried away from the cells in small channels mimicking the veins in plants and concentrated using evaporation-driven flows.

These concentrated energy-dense molecules can then be converted to a wide variety of biofuels. Once the algal biofilm reaches the end of its productive life over several months, it is removed, a new biofilm is grown to maturity, and the cycle continues. In this way, the available solar energy, water, and nutrients are directed more towards the production of fuel precursors and less towards growth, achieving a higher solar energy conversion and resource utilization efficiency.

Dr. Berberoglu and Ph.D. student Thomas Murphy grow and evaluate the performance of algal biofilms in special chambers where they can control the environmental inputs.

Dr. Berberoglu and Ph.D. student Thomas Murphy grow and evaluate the performance of algal biofilms in special chambers where they can control the environmental inputs.

Some of the initial work on developing algae biofilm cultivation was previously performed at Dr. Berberoglu’s laboratory by Dr. Altan Ozkan, a former Ph.D. student of Dr. Berberoglu and now an assistant professor at Bahcesehir University in Istanbul, Turkey. Drs. Berberoglu and Ozkan cultivated algae as biofilms on impervious surfaces under surface flow of nutrients in the laboratory. Moreover, they studied the fundamental aspects of algal cell attachment and formation of algal biofilms.

In the current work, Dr. Berberoglu and Mr. Murphy are focusing on the transport of nutrients, metabolites, light and thermal energy in the photosynthetic biofilms. For this Mr. Murphy has been developing computer models that couple light and mass transport with cellular kinetics for understanding and optimizing how these affect the productivity of the synthetic tree.

Dr. Berberoglu and Mr. Murphy are working with NASA to design synthetic trees using photosynthetic biofilms, which use much less water and energy than conventional photobioreactors.

Dr. Berberoglu and Mr. Murphy are working with NASA to design synthetic trees using photosynthetic biofilms, which use much less water and energy than conventional photobioreactors.

To further this technology, Dr. Berberoglu is also collaborating with Dr. Alexandre da Silva (UT ME) studying evaporative-driven transport of nutrient solutions in porous media, with Dr. Matt Posewitz of Colorado School of Mines who is genetically engineering algal strains to secrete the desired bioproducts, and with Drs. Lee and Brad Bebout of NASA Ames who are ecological experts working on improving the diversity of species in the photosynthetic biofilms.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a represent...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
Algatechnologies (“Algatech”), Israel, has announced a more than 100% expansion of its production capacity of AstaPure® brand natural astaxanthin. This doubling of capaci...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
Algae is being discussed at the heart of EXPO Milano 2015, the international event that has existed since 1851, spawning world shaping themes and icons, such as the Eiffe...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
The Algae Biomass Organization (ABO) released the following statement calling on the EPA to include Carbon Capture and Utilization strategies in rules proposed June 2, 20...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
In an effort to propel the algae industry forward, the Algae Testbed Public Private Partnership (ATP3) offers a series of hands-on specialized workshops suited for partic...