[ad#PhycoBiosciences AIM Interview]

Innovations

UT scientists design synthetic trees to secrete algal biofuel

April 8, 2013
AlgaeIndustryMagazine.com

Dr. Halil Berberoglu in the laboratory with a sample of algae for biofuel production

Dr. Halil Berberoglu in the laboratory with a sample of algae for biofuel production

Dr. Halil Berberoglu, an assistant professor in the Cockrell School of Engineering at The University of Texas at Austin, is leading a research effort to produce renewable biofuel using solar energy. To address the energetic and economic challenges of conventional algal biofuel production, Dr. Berberoglu, together with his Ph.D. student Thomas Murphy, have envisioned a novel system that mimics the way we obtain sap from a maple tree. In this case, instead of harvesting maple syrup, we would harvest biofuels from a synthetic tree.

In this concept, algae cells are grown as photosynthetic biofilms on porous surfaces that keep them hydrated and provide them with the nutrients they need for growing to maturity. Once the biofilm is matured, the supply of certain nutrients is stopped and the growth of cells is inhibited. At this point, the algae are provided with the necessary inputs to carry on photosynthesizing and secreting out energy dense molecules, such as free fatty acids. These are carried away from the cells in small channels mimicking the veins in plants and concentrated using evaporation-driven flows.

These concentrated energy-dense molecules can then be converted to a wide variety of biofuels. Once the algal biofilm reaches the end of its productive life over several months, it is removed, a new biofilm is grown to maturity, and the cycle continues. In this way, the available solar energy, water, and nutrients are directed more towards the production of fuel precursors and less towards growth, achieving a higher solar energy conversion and resource utilization efficiency.

Dr. Berberoglu and Ph.D. student Thomas Murphy grow and evaluate the performance of algal biofilms in special chambers where they can control the environmental inputs.

Dr. Berberoglu and Ph.D. student Thomas Murphy grow and evaluate the performance of algal biofilms in special chambers where they can control the environmental inputs.

Some of the initial work on developing algae biofilm cultivation was previously performed at Dr. Berberoglu’s laboratory by Dr. Altan Ozkan, a former Ph.D. student of Dr. Berberoglu and now an assistant professor at Bahcesehir University in Istanbul, Turkey. Drs. Berberoglu and Ozkan cultivated algae as biofilms on impervious surfaces under surface flow of nutrients in the laboratory. Moreover, they studied the fundamental aspects of algal cell attachment and formation of algal biofilms.

In the current work, Dr. Berberoglu and Mr. Murphy are focusing on the transport of nutrients, metabolites, light and thermal energy in the photosynthetic biofilms. For this Mr. Murphy has been developing computer models that couple light and mass transport with cellular kinetics for understanding and optimizing how these affect the productivity of the synthetic tree.

Dr. Berberoglu and Mr. Murphy are working with NASA to design synthetic trees using photosynthetic biofilms, which use much less water and energy than conventional photobioreactors.

Dr. Berberoglu and Mr. Murphy are working with NASA to design synthetic trees using photosynthetic biofilms, which use much less water and energy than conventional photobioreactors.

To further this technology, Dr. Berberoglu is also collaborating with Dr. Alexandre da Silva (UT ME) studying evaporative-driven transport of nutrient solutions in porous media, with Dr. Matt Posewitz of Colorado School of Mines who is genetically engineering algal strains to secrete the desired bioproducts, and with Drs. Lee and Brad Bebout of NASA Ames who are ecological experts working on improving the diversity of species in the photosynthetic biofilms.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
Solazyme has announced that total revenue for the fourth quarter of 2014 was $14.5 million, compared with $11.3 million in the fourth quarter of 2013, an increase of 29%....
The European (FP7) algae project Sustainable PoLymers from Algae Sugars and Hydrocarbons (SPLASH) has been developing a platform technology for the conversion of third ge...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
Algae.Tec has announced a collaboration agreement for the commercialization of its algae production technology with Larimar Energy SRL, of the Dominican Republic. The ene...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
Algiran, an Iranian algal biotech company, has recently established a pilot scale algal cultivation demonstration facility at the Chabahar Free Zone, in the Baluchistan P...
Melissae Fellet reports in Chemical & Engineering News that new materials containing ultraviolet-absorbing molecules found in algae and reef-fish mucus could serve as...
Bloomberg reports that ANA Holdings Inc., Japan’s largest airline, plans to use a Euglena Co. biofuel made from algae. ANA will use a mix of about 10 percent of the algae...
Marco Poletto, is both a PhD student at Aarhus School of Architecture and partner in London-based ecoLogicStudio, a firm which creates eco-friendly urban systems that int...
San Francisco biotech startup New Wave Foods aims to address the impact of overfishing, bycatch, water pollution, slave labor, an animal death toll in the trillions, and ...