[ad name=”PhycoBiosciences AIM Interview”]

Innovations

Using diatoms to protect grain exports

February 10, 2014
AlgaeIndustryMagazine.com

Diatoms to the rescue – photograph of diatoms arranged on a microscope slide  by W.M. Grant from the California Academy of Sciences Diatom Collection.

Diatoms to the rescue – photograph of diatoms arranged on a microscope slide
by W.M. Grant from the California Academy of Sciences Diatom Collection.

University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain from insects.

The researchers are taking advantage of the unique properties of these single-celled algae. Diatoms have been called Nature’s nanofabrication factories because of their production of tiny (nanoscale) structures made from silica that have a range of properties of potential interest for nanotechnology.

“One area of our research is focused on transforming this cheap diatom silica, readily available as a by-product of mining, into valuable nanomaterials for diverse applications – one of which is pest control,” says Professor Dusan Losic, ARC Future Fellow in the University’s School of Chemical Engineering.

Dr. Dusan Losic, of the University of Adelaide’s School of Chemical Engineering is leading the diatom pest control research

Dr. Dusan Losic, of the University of Adelaide’s School of Chemical Engineering is leading the diatom pest control research

“There are two looming issues for the worldwide protection against insect pests of stored grain: firstly, the development of resistance by many species to conventional pest controls – insecticides and the fumigant phosphine – and, secondly, the increasing consumer demand for residue-free grain products and food,” Professor Losic says.

“In the case of Australia, we export grain worth about $8 billion each year – about 25 million tons – which could be under serious threat. We urgently need to find alternative methods for stored grain protection which are ecologically sound and resistance-free.”

The researchers are using a natural, non-toxic silica material based on the “diatomaceous earths” formed by the fossilization of diatoms. The material disrupts the insect’s protective cuticle, causing the insect to dehydrate.

“This is a natural and non-toxic material with a significant advantage being that, as only a physical mode of action is involved, the insects won’t develop resistance,” says Professor Losic.

“Equally important is that it is environmentally stable with high insecticidal activity for a long period of time. Therefore, stored products can be protected for longer periods of time without the need for frequent re-application.”

The project is being funded by the Grains Research and Development Corporation. The researchers are in the final stages of optimizing the formula of the material.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
In an age where customer input is as easy as a click, OriginOil has tapped directly into its intended market to R&D their next generation algae harvester -- with a de...
Developing renewable fuel from wet algae is one of the latest innovations Richland, Washington-based Pacific Northwest National Laboratory (PNNL) has successfully driven ...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
Kevin Valine at the Modesto Bee writes that the California city of Modesto may sell the algae that grows in its roughly 1,000 acres of sewer ponds at its Jennings Road wa...
James Goodman writes in the democratandchronicle.com about Jeffrey Lodge, an associate professor of biological sciences at Rochester Institute of Technology, who knows wh...
As of March 1, 2015, bbi-biotech GmbH, of Berlin, Germany, has begun integrating IGV Biotech GmbH’s photobioreactors into its own life science product portfolio. A former...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
Five years ago, on April 20, 2010, an explosion on the Deepwater Horizon rig caused a release of 200 million gallons of oil into the Gulf of Mexico before the well was ca...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Algae “red tide” events often create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteri...
Japan’s IHI Corporation has announced that they have succeeded in stably cultivating a modified high-output algal strain in a 1,500 square meter open pond in Kagoshima, K...
Using microalgae to capture CO2 is a complex process, especially in flue gas environments, reports an editorial by IEA Clean Coal Centre in worldcoal.com. There are many ...
EnAlgae researchers have published an economic model to help to explore the economics of cultivating macroalgae at sea. The model and report can be found here as outputs ...