Innovations

Using diatoms to protect grain exports

February 10, 2014
AlgaeIndustryMagazine.com

Diatoms to the rescue – photograph of diatoms arranged on a microscope slide  by W.M. Grant from the California Academy of Sciences Diatom Collection.

Diatoms to the rescue – photograph of diatoms arranged on a microscope slide
by W.M. Grant from the California Academy of Sciences Diatom Collection.

University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain from insects.

The researchers are taking advantage of the unique properties of these single-celled algae. Diatoms have been called Nature’s nanofabrication factories because of their production of tiny (nanoscale) structures made from silica that have a range of properties of potential interest for nanotechnology.

“One area of our research is focused on transforming this cheap diatom silica, readily available as a by-product of mining, into valuable nanomaterials for diverse applications – one of which is pest control,” says Professor Dusan Losic, ARC Future Fellow in the University’s School of Chemical Engineering.

Dr. Dusan Losic, of the University of Adelaide’s School of Chemical Engineering is leading the diatom pest control research

Dr. Dusan Losic, of the University of Adelaide’s School of Chemical Engineering is leading the diatom pest control research

“There are two looming issues for the worldwide protection against insect pests of stored grain: firstly, the development of resistance by many species to conventional pest controls – insecticides and the fumigant phosphine – and, secondly, the increasing consumer demand for residue-free grain products and food,” Professor Losic says.

“In the case of Australia, we export grain worth about $8 billion each year – about 25 million tons – which could be under serious threat. We urgently need to find alternative methods for stored grain protection which are ecologically sound and resistance-free.”

The researchers are using a natural, non-toxic silica material based on the “diatomaceous earths” formed by the fossilization of diatoms. The material disrupts the insect’s protective cuticle, causing the insect to dehydrate.

“This is a natural and non-toxic material with a significant advantage being that, as only a physical mode of action is involved, the insects won’t develop resistance,” says Professor Losic.

“Equally important is that it is environmentally stable with high insecticidal activity for a long period of time. Therefore, stored products can be protected for longer periods of time without the need for frequent re-application.”

The project is being funded by the Grains Research and Development Corporation. The researchers are in the final stages of optimizing the formula of the material.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...
Solazyme, Inc. and Versalis, the chemical subsidiary of Eni S.p.A., one of the world’s largest oil and gas companies, today announced a partnership to expand the commerci...
Western Morning News reports that Westcountry scientists in the U.K. are using algae to develop an innovative new method of cleaning up contaminated mine water while harv...
Cyanobacteria, also known as blue-green algae because of their color, have endured for more than 2.5 billion years, providing ample time to adapt to changes in the Earth'...
Tess Riley writes in TheGuardian.com about how spirulina may be able to combat malnutrition in developing countries. Spirulina is one of the oldest life forms on Earth, c...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
West Chester, Pennsylvania-based International Sustainability Group, Inc., an innovative green technology and sustainable manufacturing company, has entered the algae mar...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
Designboom.com is showcasing the “Spirulina Fountain” designed by bureau A. The installation constitutes a hybrid, fusing the production basins of the intense blue-green ...