[ad name=”PhycoBiosciences AIM Interview”]

Innovations

Using diatoms to protect grain exports

February 10, 2014
AlgaeIndustryMagazine.com

Diatoms to the rescue – photograph of diatoms arranged on a microscope slide  by W.M. Grant from the California Academy of Sciences Diatom Collection.

Diatoms to the rescue – photograph of diatoms arranged on a microscope slide
by W.M. Grant from the California Academy of Sciences Diatom Collection.

University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain from insects.

The researchers are taking advantage of the unique properties of these single-celled algae. Diatoms have been called Nature’s nanofabrication factories because of their production of tiny (nanoscale) structures made from silica that have a range of properties of potential interest for nanotechnology.

“One area of our research is focused on transforming this cheap diatom silica, readily available as a by-product of mining, into valuable nanomaterials for diverse applications – one of which is pest control,” says Professor Dusan Losic, ARC Future Fellow in the University’s School of Chemical Engineering.

Dr. Dusan Losic, of the University of Adelaide’s School of Chemical Engineering is leading the diatom pest control research

Dr. Dusan Losic, of the University of Adelaide’s School of Chemical Engineering is leading the diatom pest control research

“There are two looming issues for the worldwide protection against insect pests of stored grain: firstly, the development of resistance by many species to conventional pest controls – insecticides and the fumigant phosphine – and, secondly, the increasing consumer demand for residue-free grain products and food,” Professor Losic says.

“In the case of Australia, we export grain worth about $8 billion each year – about 25 million tons – which could be under serious threat. We urgently need to find alternative methods for stored grain protection which are ecologically sound and resistance-free.”

The researchers are using a natural, non-toxic silica material based on the “diatomaceous earths” formed by the fossilization of diatoms. The material disrupts the insect’s protective cuticle, causing the insect to dehydrate.

“This is a natural and non-toxic material with a significant advantage being that, as only a physical mode of action is involved, the insects won’t develop resistance,” says Professor Losic.

“Equally important is that it is environmentally stable with high insecticidal activity for a long period of time. Therefore, stored products can be protected for longer periods of time without the need for frequent re-application.”

The project is being funded by the Grains Research and Development Corporation. The researchers are in the final stages of optimizing the formula of the material.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
A new $1 million relationship between Michigan State University and ExxonMobil will expand research in the fundamental science to advance algae-based fuels. Dr. David Kra...
The Technical University of Munich (TUM) has built a one-of-a-kind technical facility for algae cultivation at the Ludwig Bölkow Campus in Ottobrunn, to the south of Muni...
The Symbiosis Center in Denmark is exploring the industrial potential of microalgae, reports EUobserver's Regional Focus magazine. Using CO2 and light to produce valuable...
The U.S. Department of Energy (DOE) has awarded Arizona State University (ASU) a three-year, $1 million grant to fund the Atmospheric Carbon Dioxide Capture and Membrane ...
Ewen Callaway writes in the jounal Nature that restrictions on harvests and exports of Gelidium seaweed in Morocco have affected the global supply of the lab reagent agar...
Algatechnologies Ltd. has launched its AstaPure® 5% Natural Astaxanthin oleoresin, derived from Haematococcus pluvialis microalgae. This latest addition to the AstaPure f...
While researchers have long suspected that climate change will lead to stronger and more frequent algal blooms, a new fusion of climate models and watershed models has pr...
Students of algal research, including it's various applications and business models, have increasing opportunities to get quickly up to speed in many aspects of the rapid...
Algae.Tec has announced that it has completed the commissioning and initial startup of an algae production plant to produce algae-based nutraceutical products. The plant ...
Nevele, Belgium-based TomAlgae is developing freeze-dried microalgae for feed in shrimp hatcheries. The company has created its own microalgal “cultivar” and manufactures...
Flint Michigan’s water supply was switched from Lake Huron to the Flint River in 2014. The Flint is so notoriously dirty that some locals call it the Filth River. The cha...
Abigail Klein Leichman writes in ISRAEL21c that, in the rush to research algae-based technologies, Israel – as a startup nation itself – is at the forefront of much of th...