go to http://www.aocs.org! Algaetech International — The Future is NowComplete Algae Monitoring System Visit  cricatalyst.com!Nexus — Leaders in Greenhouse Systems Integration

Research

University Ecologists Urge GE Algae Scrutiny

University Ecologists Urge GE Algae Scrutiny

August 26, 2012
AlgaeIndustryMagazine.com

Allison Snow

Allison Snow

Writing in the August 2012 issue of the journal BioScience, university professors from Ohio State U. and U. of Kansas suggest that, as algae are high on the genetic engineering agenda as a potential source for biofuel, they should be subjected to independent studies of any environmental risks that could be linked to cultivating algae for this purpose. They also propose that ecology experts be among scientists given independent authority and adequate funding to explore any potential unintended consequences of this technological pursuit.

Val Smith

Val Smith

A critical baseline concern is whether genetically engineered algae would be able to survive in the wild, said Allison Snow, professor of evolution, ecology and organismal biology at Ohio State University and lead author of the paper.

“If they’re grown in big, open ponds, which is mainly what were talking about, could the newer types of microalgae get out into nature and mingle? We need to know if they can survive and whether they can hybridize or evolve to become more prolific when they get out of a controlled environment,” Snow said.

“If they can survive, we also need to know whether some types of genetically engineered blue-green algae, for example, could produce toxins or harmful algal blooms – or both,” Snow noted.

“The applications are new and the organisms are less well-known. They range from being very tame ‘lab rats’ that won’t survive in nature to wild organisms that can presumably cross with each other unless some measures are taken to prevent crossing. It’s a very new situation,” Snow said.

Snow co-authored the article with aquatic ecologist Val Smith, a professor in the Department of Ecology and Evolutionary Biology at the University of Kansas.

Snow has a history in this area of research. She led a study in 2002 that was the first to show that a gene artificially inserted into crop plants to fend off pests could migrate to weeds in a natural environment and make the weeds stronger. She also has served on national panels that monitor and make recommendations about the release of genetically engineered species into the environment.

There are a lot of unknowns about this area of research and development in microalgae, and that’s largely because algae don’t have the breeding history that, say, corn and soybeans have, Snow said. In addition, few details are publicly available because much of this information remains confidential as businesses compete to be the first to commercialize their genetically altered algae.

“We’re hoping to reach several audiences – including ecologists, molecular biologists and biotech business owners – and bring them together. There’s a community of people like me who study genetically engineered crops and how they interact with the environment, and we need to get this started with algae.

“There’s a lot of hype and speculation about algae as a biofuel source, and it’s hard to gauge exactly what’s going on. We see many indications, especially funding, that private companies and the government have decided this is important and worth pursuing,” Snow said. “So much will depend on the economics of it. Whether you can get a lot of energy out of algae depends on these breakthroughs with biology, technology, or both.”

In the same way that certain crop plants are bred with genes to help them repel pests and tolerate harsh conditions, different species of algae are likely being genetically engineered to grow rapidly because mass quantities of these tiny species will be needed to produce adequate fuel supplies.

The authors recommend, for starters, a comparative examination of genetically engineered algae strains intended for large-scale cultivation with their natural counterparts to determine the basic differences between the two. They also acknowledged that genetically engineered algae might be equipped with so-called “suicide genes” that would make it impossible for the algae to survive a release into the wild.

“If such precautions are taken in lieu of thorough environmental assessments, more information should be required to ensure their long-term success and to prevent (genetically engineered) algae from evolving to silence or overcome biological traits that are designed to kill them,” the authors wrote.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
Algae.Tec Ltd has received its first purchase order from Reliance Industrial Investments and Holdings Limited (RIIHL), in connection with the arrangements announced on Ja...
In a global scenario where increasing attention is being directed towards issues of sustainability and limited food supplies, algal sources offer immense scope for the ra...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Algatechnologies (“Algatech”), Israel, has announced a more than 100% expansion of its production capacity of AstaPure® brand natural astaxanthin. This doubling of capaci...
Algenist®, Solazyme’s anti-aging skincare brand featuring microalgae, has announced its launch in Nordstrom locations throughout the United States. The launch into Nordst...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
The Algae Biomass Organization (ABO) released the following statement calling on the EPA to include Carbon Capture and Utilization strategies in rules proposed June 2, 20...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...