Research

University Ecologists Urge GE Algae Scrutiny

University Ecologists Urge GE Algae Scrutiny

August 26, 2012
AlgaeIndustryMagazine.com

Allison Snow

Allison Snow

Writing in the August 2012 issue of the journal BioScience, university professors from Ohio State U. and U. of Kansas suggest that, as algae are high on the genetic engineering agenda as a potential source for biofuel, they should be subjected to independent studies of any environmental risks that could be linked to cultivating algae for this purpose. They also propose that ecology experts be among scientists given independent authority and adequate funding to explore any potential unintended consequences of this technological pursuit.

Val Smith

Val Smith

A critical baseline concern is whether genetically engineered algae would be able to survive in the wild, said Allison Snow, professor of evolution, ecology and organismal biology at Ohio State University and lead author of the paper.

“If they’re grown in big, open ponds, which is mainly what were talking about, could the newer types of microalgae get out into nature and mingle? We need to know if they can survive and whether they can hybridize or evolve to become more prolific when they get out of a controlled environment,” Snow said.

“If they can survive, we also need to know whether some types of genetically engineered blue-green algae, for example, could produce toxins or harmful algal blooms – or both,” Snow noted.

“The applications are new and the organisms are less well-known. They range from being very tame ‘lab rats’ that won’t survive in nature to wild organisms that can presumably cross with each other unless some measures are taken to prevent crossing. It’s a very new situation,” Snow said.

Snow co-authored the article with aquatic ecologist Val Smith, a professor in the Department of Ecology and Evolutionary Biology at the University of Kansas.

Snow has a history in this area of research. She led a study in 2002 that was the first to show that a gene artificially inserted into crop plants to fend off pests could migrate to weeds in a natural environment and make the weeds stronger. She also has served on national panels that monitor and make recommendations about the release of genetically engineered species into the environment.

There are a lot of unknowns about this area of research and development in microalgae, and that’s largely because algae don’t have the breeding history that, say, corn and soybeans have, Snow said. In addition, few details are publicly available because much of this information remains confidential as businesses compete to be the first to commercialize their genetically altered algae.

“We’re hoping to reach several audiences – including ecologists, molecular biologists and biotech business owners – and bring them together. There’s a community of people like me who study genetically engineered crops and how they interact with the environment, and we need to get this started with algae.

“There’s a lot of hype and speculation about algae as a biofuel source, and it’s hard to gauge exactly what’s going on. We see many indications, especially funding, that private companies and the government have decided this is important and worth pursuing,” Snow said. “So much will depend on the economics of it. Whether you can get a lot of energy out of algae depends on these breakthroughs with biology, technology, or both.”

In the same way that certain crop plants are bred with genes to help them repel pests and tolerate harsh conditions, different species of algae are likely being genetically engineered to grow rapidly because mass quantities of these tiny species will be needed to produce adequate fuel supplies.

The authors recommend, for starters, a comparative examination of genetically engineered algae strains intended for large-scale cultivation with their natural counterparts to determine the basic differences between the two. They also acknowledged that genetically engineered algae might be equipped with so-called “suicide genes” that would make it impossible for the algae to survive a release into the wild.

“If such precautions are taken in lieu of thorough environmental assessments, more information should be required to ensure their long-term success and to prevent (genetically engineered) algae from evolving to silence or overcome biological traits that are designed to kill them,” the authors wrote.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
A series of articles by Stephen Mayfield and the UCSD Laboratory deserve recognition for their articles on algae-based medicines for malaria and cancer. Mayfield and his ...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...
Following a request from the European Commission, the European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) was recently asked t...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Portuguese cement facility, Secil, and microalgae biotechnology company, A4F, also based in Portugal, have formed AlgaFarm, a joint venture to develop the use of cement f...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
A team of Michigan State University algae researchers have discovered a cellular "snooze button" that has the potential to improve biofuel production and offer ...