Research

UM researchers to test multi-strain algae cultivation

August 1, 2013
AlgaeIndustryMagazine.com

“People have suggested that species diversity might increase the efficiency of algal biofuel systems, but nobody has set up the experiments to test it directly. These will be the first experiments to systematically manipulate the number and types of species in the system to determine how to maximize the yield and stability of algal biofuel.” —Bradley Cardinale

“People have suggested that species diversity might increase the efficiency of algal biofuel systems, but nobody has set up the experiments to test it directly. These will be the first experiments to systematically manipulate the number and types of species in the system to determine how to maximize the yield and stability of algal biofuel.”
—Bradley Cardinale

Ateam of University of Michigan (U-M) researchers has been awarded a $2 million federal grant to identify and test naturally diverse groups of green algae that can be grown together to create a high-yield, environmentally sustainable and cost-effective system to produce next-generation biofuels.

National Science Foundation funding for the project begins Sept. 1 and will continue for four years. The effort will involve growing various combinations of lake algae in 180 aquariums at a new one-of-a-kind U-M laboratory, then field-testing the most promising candidates inside 80 fiberglass cattle tanks at the University’s E.S. George Reserve, a 1,300-acre biological research station near Pinckney, Michigan.

The main goal is to test the idea that certain naturally diverse groups of algae have complementary traits that enhance the efficiency and stability of biofuel yield beyond what any single species can do alone. The project involves an unusual collaboration among ecologists, evolutionary biologists and engineers from four labs that will include about 20 researchers and students.

“People have suggested that species diversity might increase the efficiency of algal biofuel systems, but nobody has set up the experiments to test it directly. These will be the first experiments to systematically manipulate the number and types of species in the system to determine how to maximize the yield and stability of algal biofuel,” said ecologist and team leader Bradley Cardinale, an associate professor at the U-M School of Natural Resources and Environment.

The U-M-led “biodiversity and biofuels” project aims to increase the productivity and stability of algae-based biofuel systems while reducing environmental impacts by recycling wastes and cutting the need for biocides. The end result should be a more sustainable system that is cheaper to operate.

“Rather than engineering a super-species of algae and fighting with nature to maintain it as a pure monoculture through the use of pesticides and herbicides, we propose to cooperate with nature by identifying algal communities that naturally exhibit high biofuel potential and the desired stability through time,” said U-M chemical engineer Phillip Savage, one of three project co-leaders. The other two are U-M chemical engineer Nina Lin and evolutionary biologist Todd Oakley of the University of California, Santa Barbara.

In his laboratory in the basement of U-M’s Dana Building, Cardinale has established cultures of 55 of the most common species of green algae found in North American lakes.

The focus is on multiple species that naturally co-occur because numerous studies have shown that diverse communities of plants (including green algae) exploit resources more fully and collectively produce more plant tissue than any single species alone. Diverse communities are also more resistant to pests and invaders, can better withstand environmental fluctuations and exhibit more stable yields over time.

Starting around mid-September, Cardinale’s lab will begin growing various combinations of eight of the 55 algae species inside 2.4-gallon plastic aquariums, called continuous-flow chemostats. The amount of nitrogen, phosphorus, light and carbon dioxide in each tank, as well as the water temperature, will be tightly controlled.

The newly installed chemostats are meant to mimic lakes, and they complement 150 mini-streams, called flumes, installed in the Dana basement two years ago.

Taken together, the 330 chemostats and flumes constitute a state-of-the-art laboratory that is unmatched by any facility in the world, Cardinale said.

“No lab like this exists anywhere else. There’s nothing else that even comes close to it,” he said.

Using the chemostats, researchers will make multiple measurements of the various algae combinations to assess their efficiency and yield. Stability of the various combinations will be tested by measuring their response to changes in water temperature and to the introduction of undesirable algae species.

The highest-scoring algae combinations from the first phase of the project will move on to the next round, the 260-gallon cattle tanks at the E.S. George Reserve, a setup that mimics real world, open pond algal growth systems known as photosynthetic biorefineries.

Phillip Savage’s lab will use hydrothermal liquefaction to measure the quantity and quality of the combustible oils, or biocrude, produced by the various algae combinations – from both the laboratory and field experiments. His team also will compare the ability of single and multispecies systems to reuse and recycle wastes for additional growth.

Lin is a U-M chemical engineer who employs microfluidics and high-throughput screening technologies to “bio-prospect” for microorganisms associated with biochemical or biomedical applications. For the algae project, she is modifying various laboratory techniques so the team can expand the search for multispecies assemblages that exhibit high yields and efficient waste recycling.

By reconfiguring a device her lab originally developed for use with bacteria, Lin should be able to screen more than a million algal species combinations. A $60,000 grant from MCubed, U-M’s one-of-a-kind seed grant program, funded a collaboration between Lin and Cardinale that yielded vital preliminary data that was included in the National Science Foundation proposal.

“If, as we propose, it is possible to engineer naturally diverse communities of algae to enhance the efficiency, yield and stability of yields, then the development of multispecies photosynthetic biorefineries would indeed represent a ‘win-win’ scenario for biodiversity conservation and energy production in the next century,” Lin said.

UC-Santa Barbara’s Oakley is an evolutionary biologist who analyzes differences in gene expression among species, and the functional differences that result. He will lead the effort to use high-throughput sequencing technologies to quantify every expressed gene in the various algal combinations. That will enable the researchers to determine how the production of biocrude correlates with the expression of any known gene.

The four-year project will culminate in a conceptual design followed by a life-cycle assessment. The conceptual design will examine all aspects of a multispecies algal biorefinery, from algae cultivation to biocrude production. It will determine the size needed for the facility and will estimate the capital and operating costs, which in turn will show the conditions required to make the biorefinery profitable.

The life-cycle assessment will measure the various environmental impacts attributable to all activities related to the construction and operation of a multispecies algal biorefinery – including emissions of heat-trapping carbon dioxide gas. The results will then be compared to the impacts resulting from the construction and operation of a single-species algal biorefinery. Savage will work with researchers at Argonne National Laboratory on the comparison.

If the four-year project proves fruitful, the researchers hope that future funding could lead to the design and construction of prototypes for a commercially viable multispecies algal biorefinery.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Heliae, SCHOTT North America and Arizona State University (ASU) have announced a partnership to bring Heliae’s algae production technology to ASU’s algae testbed facility...
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
Biomass abounds on Earth, as forests, fields, sewage and seaweed. But only a small fraction, mostly human or agricultural waste, can be harvested without posing environme...
Algae.Tec Ltd has received its first purchase order from Reliance Industrial Investments and Holdings Limited (RIIHL), in connection with the arrangements announced on Ja...
Algae is being discussed at the heart of EXPO Milano 2015, the international event that has existed since 1851, spawning world shaping themes and icons, such as the Eiffe...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...
In an effort to propel the algae industry forward, the Algae Testbed Public Private Partnership (ATP3) offers a series of hands-on specialized workshops suited for partic...
Following a request from the European Commission, the European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) was recently asked t...
Channelnewsasia.com reports on three young Spaniards who harvest seaweed, a culinary delicacy, as a way for them to stay out of Spain’s troubled financial waters. 35-year...
Using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death d...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...