[ad#PhycoBiosciences AIM Interview]

Research

Boris Striepen, a Georgia Research Alliance Distinguished Investigator in UGA’s Center for Tropical and Emerging Global Diseases, and cellular biology doctoral candidate Maria Francia work together to research ways to combat the parasites that cause malaria and toxoplasmosis.

Boris Striepen, a Georgia Research Alliance Distinguished Investigator in UGA’s Center for Tropical and Emerging Global Diseases, and cellular biology doctoral candidate Maria Francia work together to research ways to combat the parasites that cause malaria and toxoplasmosis.

UGA Researchers Find Algal Key to Deadly Pathogens

December 18, 2012, by James Hataway, UGA Today
AlgaeIndustryMagazine.com

Long ago, when life on Earth was in its infancy, a group of small single-celled algae propelled themselves through the vast prehistoric ocean by beating whip like tails called flagella. It’s a relatively unremarkable tale, except that now, more than 800 million years later, these organisms have evolved into parasites that threaten human health, and their algal past in the ocean may be the key to stopping them.

The organisms are called apicomplexa, but people know them better as the parasites that cause malaria and toxoplasmosis, serious diseases that infect millions of people every year, particularly in the developing world.

Now, researchers at the University of Georgia have discovered how an important structure inside these parasitic cells, which evolved from the algal ancestor millions of years ago, allows the cells to replicate and spread inside their hosts. Their research may soon lead to new therapies to halt these deadly pathogens before they cause disease.

In order to survive, the parasitic apicomplexa must invade an animal or human and force its way into the cells of its host. Once inside the host cell, the parasite begins to replicate into numerous daughter cells that in turn create additional copies, spreading the infection throughout the body.

In their study, published Dec. 11 in PLoS Biology, the researchers demonstrate that, during the process of replication, the parasite cell loads genetic material into its daughter cells via a strand of fiber that connects the two. By altering the genes for the components of the fiber in the laboratory, the researchers discovered that they could prevent parasite replication, making the parasite essentially harmless.

“These altered parasites can initially infect cells, but once we turn off the fiber genes, they cannot create new daughter cells and spread,” said Maria Francia, lead author and doctoral candidate in the department of cellular biology. “Since it cannot replicate, the parasite eventually dies without causing serious harm.”

This replication fiber appears to have evolved from the flagellum that ancient algae used to swim.

“This was a surprising finding,” said Boris Striepen, a Georgia Research Alliance Distinguished Investigator in UGA’s Center for Tropical and Emerging Global Diseases. “These parasites no longer use flagella to swim, but they have apparently repurposed this machinery to now organize the assembly of an invasive cell.”

During evolution, flagella have been reengineered to serve numerous different functions in animals, including the sensors that allow us to see and smell. This study suggests that in these parasites structures used to invade host cells may be also derived from flagella.

Current treatments for diseases like malaria are threatened by the parasite becoming resistant to the drugs, so the need for new therapies is always pressing.

This algae-based connective fiber may serve as a promising target for anti-parasitic drug development, said Striepen, who is also a cellular biologist in the Franklin College of Arts and Sciences. He cautions, however, that more work must be done to learn how to manipulate or destroy the fiber in parasites that have infected humans or animals.

But both Striepen and Francia argue that scientists do well to pay close attention to the evolutionary history of the organisms they study.

“It is extremely important to understand the evolution of different organisms, but especially the evolution of pathogens,” Striepen said. “The analysis of their evolution produces important opportunities to develop treatments, but it also helps us understand the basic structure of the pathogens that we must fight.”

Established in 1998, the University of Georgia Center for Tropical and Emerging Global Diseases promotes international biomedical research and educational programs at UGA and throughout Georgia to address the parasitic and other tropical diseases that continue to threaten the health of people throughout the world. For more information about the center, see www.ctegd.uga.edu.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...
“The Israeli food-tech industry has been growing in leaps and bounds in recent years and is taking a leading role worldwide with a broad range of innovative companies and...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
How did plants make the evolutionary jump from water to land? Scientists think that green algae are their water-living ancestors, but we are not sure how the transition t...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
Baillargues, France’s Microphyt, a leading company in microalgae-based natural solutions for nutrition and well-being, has announced a fundraising of €28.5 million (US$32...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...