Innovations

UCSD Chemists Develop Protein Reverse Tagging Method

September 19, 2012, by Kim McDonald
AlgaeIndustryMagazine.com

Reverse Tagging

The new technique allows scientists to add and remove different kinds of chemical probes at specific locations on proteins, such as the fatty acid molecule shown here. Credit: J. LaClair, UC San Diego

Chemists at UC San Diego have developed a method that for the first time provides scientists the ability to attach chemical probes onto proteins and subsequently remove them in a repeatable cycle.

Their achievement, detailed in a paper that appears online this week in the journal Nature Methods, will allow researchers to better understand the biochemistry of naturally formed proteins in order to create better antibiotics, anti-cancer drugs, biofuels, food crops and other natural products. It will also provide scientists with a new laboratory tool they can use to purify and track proteins in living cells.

The development was the culmination of a 10 year effort by researchers in the laboratory of Michael Burkart, a professor of chemistry and biochemistry, to establish a method to both attach a chemical probe at a specific location on a protein and selectively remove it.

This flexibility allows researchers to study the protein with many different functional attachments, providing versatility akin to a biochemical Swiss Army knife. The great advantage of this technique is the broad flexibility of the attachments, which can be dyes, purification agents or mimics of natural metabolic products. Each of these attachments can be used for different purposes and biological studies.

Burkart’s goal in his own laboratory is to understand more about the biochemical pathways of fatty acid metabolism and the biosynthesis of other natural products. One project focuses on engineering algae in order to produce improved biofuels. In this effort, the scientists hope to maximize the production of high quality algae oils.

“In fatty acid metabolism, the fatty acids grow from an arm that eventually curls around and starts interacting with the metabolic protein,” said Burkart, who is also associate director of the San Diego Center for Algae Biotechnology, or SD-CAB, a consortium of institutions in the San Diego region working together to make biofuels from algae commercially viable as transportation fuels. “What we wanted to know was how long does the growing fatty acid get before it starts binding with the protein?”

Burkart and chemists in his laboratory—Nicolas Kosa, Robert Haushalter and Andrew Smith—found a way to remove the chemical probe from this metabolic protein using an enzyme called a phosphodiesterase derived from the common bacterium Pseudomonas aeruginosa. Subsequent reattachment of a fatty acid analogue reconstituted the protein complex to its natural state. By repeating the process again and again, while examining the molecular changes in the fatty acid with nuclear magnetic spectroscopy, or NMR, during different metabolic stages, the scientists were able to detail the biochemical pathway of the fatty acid metabolism in a way they had never been able to do before.

“Without this tool, we would really have very limited ways of studying the dynamics of these fundamental metabolic processes,” Burkart said. “This opened the door for us to finally examine in detail the fatty acid biosynthesis shared by algae, which you have to understand if you want to engineer ways to improve the quantity of oil that’s made by algae or to make different types of oil molecules in algae that are better for biofuels.”

The UC San Diego chemists also used NMR to verify that the process of chemically removing and attaching the chemical probes does not degrade or alter the protein in any way. “We’ve shown that we can do this iteratively, at least four or five times, without any degradation of the protein,” said Burkart. “The protein remains very stable and can be studied very easily.”

Because these same metabolic processes are shared by the metabolism of many natural products, including anti-cancer agents, antibiotics, and natural insecticides, Burkart said this new tool should have wide application in natural product chemistry labs.

“These are fundamental biochemical pathways that we still don’t fully understand,” he said. “We’re now learning how these basic biosynthetic enzymes work. A large majority of drugs are derived from natural products and many future medicines can result from these pathways. There’s a great interest now in synthetic biology, using these pathways to make new antibiotics or new anti-cancer drugs. They’re all regulated by these same types of interactions.”

The UC San Diego chemists say their method of tagging and removing chemical probes from proteins should also have wide application as a general laboratory tool to visualize and track proteins on living cells, as well as manipulate them outside of the cell.

“One could attach a tag, such as biotin, that would allow the protein to be purified. Then one can clip off the tag and attach a fluorescent molecule to monitor protein interaction with other molecular partners,” said Burkart. “The method could also be used for studying living cells, such as observing protein expression levels throughout the cellular life cycle. We certainly see that as a possible application.”

“Dr. Burkart’s new labeling technique gives scientists an unprecedented way to probe the complex catalytic machineries involved in the biosynthesis of natural products,” said Barbara Gerratana of the National Institutes of Health’s National Institute of General Medical Sciences, which partially funded the work. “The technology will help scientists harness these natural biochemical pathways to synthesize novel molecules for uses in a broad array of areas, including basic biomedical research and drug discovery.”

The research effort was supported by grants from the National Institutes of Health R21AI090213, R01GM094924 and R01GM095970. Anyone interested in licensing this technology should contact the UC San Diego Technology Transfer office at invent@ucsd.edu.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...
A team of Michigan State University algae researchers have discovered a cellular "snooze button" that has the potential to improve biofuel production and offer ...
On September 25, 2014, a photobioreactor for the cultivation of algae was officially unveiled during a seminar at Thomas More University College in Mechelen, Belgium. Und...
William Tucker writes in fullfreedom.org about the lure the oceans have for advocates of biofuel, particularly in Scandinavia. “Two-thirds of the globe is covered with wa...
In October 2014 an unusual AlgaePARC research paper entitled Design and construction of the microalgal pilot facility AlgaePARC was published in the Journal of Algal Rese...
Western Morning News reports that Westcountry scientists in the U.K. are using algae to develop an innovative new method of cleaning up contaminated mine water while harv...
Phys.org reports that, in collaboration with the Berlin, Germany LED manufacturer FutureLED, scientists at the Technische Universität München have developed a unique comb...
Cyanobacteria, also known as blue-green algae because of their color, have endured for more than 2.5 billion years, providing ample time to adapt to changes in the Earth'...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
Kevin Quon writes in Seeking Alpha about the financial plights and pivots of Solazyme, the algae industry’s most high profile recent IPO. In a year that started with a sh...
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
West Chester, Pennsylvania-based International Sustainability Group, Inc., an innovative green technology and sustainable manufacturing company, has entered the algae mar...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
Designboom.com is showcasing the “Spirulina Fountain” designed by bureau A. The installation constitutes a hybrid, fusing the production basins of the intense blue-green ...