[ad#PhycoBiosciences AIM Interview]

Innovations

U. of M. Develops One-Minute Oil Change

November 1, 2012
AlgaeIndustryMagazine.com

Phil Savage, professor of chemical engineering at the University of Michigan, has been”pressure cooking” algae for oil.

Phil Savage, professor of chemical engineering at the University of Michigan, has been”pressure cooking” algae for oil.

University of Michigan engineering researchers have demonstrated that they can “pressure-cook” algae for as little as a minute and transform 65 percent of the biomass into biocrude. The findings were presented Nov. 1 at the 2012 American Institute of Chemical Engineers Annual Meeting in Pittsburgh, PA.

“We’re trying to mimic the process in nature that forms crude oil with marine organisms,” said Phil Savage, an Arthur F. Thurnau professor, and a professor of chemical engineering at the University of Michigan. Savage’s organism of choice is Nannochloropsis.

To make their one-minute biocrude, Savage and Julia Faeth, a doctoral student in Savage’s lab, filled a steel pipe connector with 1.5 milliliters of wet algae, capped it and plunged it into 1,100-degree Fahrenheit sand. The small volume ensured that the algae was heated through, but with only a minute to warm up, the algae’s temperature should have just grazed the 550-degree mark before the team pulled the reactor back out.

Previously, Savage and his team heated the algae for times ranging from 10 to 90 minutes. They saw their best results, with about half of the algae converted to biocrude, after treating it for 10 to 40 minutes at 570 degrees.

Why are the one-minute results so much better? Savage and Faeth won’t be sure until they have done more experiments, but they have some ideas. “My guess is that the reactions that produce biocrude are actually much faster than previously thought,” Savage said.

Faeth suggests that the fast heating might boost the biocrude by keeping unwanted reactions at bay. “For example, the biocrude might decompose into substances that dissolve in water, and the fast heating rates might discourage that reaction,” Faeth said.

The team points out that shorter reaction times mean that the reactors don’t have to be as large. “By reducing the reactor volume, the cost of building a biocrude production plant also decreases,” Faeth said, though both she and Savage cautioned that they couldn’t say for sure whether the new method is faster and cheaper until the process is further developed.

One of the advantages of the wet method is that it doesn’t just extract the existing fat from the algae – it also breaks down proteins and carbohydrates. The minute method did this so successfully that the oil contained about 90 percent of the energy in the original algae. “That result is near the upper bound of what is possible,” Savage said.

Before biocrude can be fed into the existing refinery system for petroleum, it needs pre-refining to get rid of the extra oxygen and nitrogen atoms that abound in living things. The Savage lab also is developing better methods for this leg of biofuel production, with a biocrude that was 97 percent carbon and hydrogen earlier this year. A paper on this work is currently under review.

The research, “The Effects of Heating Rate and Reaction Time on Hydrothermal Liquefaction of Microalgae,” was funded by the Emerging Frontiers in Research and Innovation program of the National Science Foundation. The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
San Francisco biotech startup New Wave Foods aims to address the impact of overfishing, bycatch, water pollution, slave labor, an animal death toll in the trillions, and ...
In one of the most comprehensive studies to date, University of North Carolina at Chapel Hill researchers have sequenced the genes of a harmful algal bloom, unveiling nev...
Discovering which algae species is best suited to make biofuel is no small task. Researchers have tried to evaluate algae in test tubes, but often find lab results don’t ...
Kailua-Kona, Hawaii-based Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and Living Ink Technologies of Den...
Diane Stopyra writes in Salon.com that a growing number of coastal states around the country are undertaking large-scale seaweed farming projects. While farms are underwa...
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
Algatech has announced the opening of Algatech Inc., a New York City-based subsidiary created to serve the North American market. The company has appointed Ken Seguine to...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...