Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Treating arthritis with algae

August 24, 2017
AlgaeIndustryMagazine.com

Cell tests in Empa laboratory. Image: Empa

Researchers at ETH Zurich, Empa and the Norwegian research institute SINTEF are pursuing a new approach to treating arthritis. This is based on a polysaccharide, a long-chain sugar molecule, originating from brown algae. When chemically modified, this “alginate” reduces oxidative stress, has an anti-inflammatory effect in cell culture tests and suppresses the immune reaction against cartilage cells, thereby combating the causes of arthritis. The research is, however, still in its infancy.

Arthritis is the most-widespread joint disease, with around 90 percent of all people over 65 being affected to varying degrees, but this degenerative disease is also widespread amongst younger people. In arthritis, the cartilage in the joint, a type of protective layer on bones that “lubricates” the joint, degenerates over time. This can be extremely painful for sufferers, because inflammatory reactions are associated with cartilage degeneration. In the later stages of the disease, bones are no longer adequately protected and can directly rub against each other.

Arthritis can affect all joints in the body, but most often affects the knee joint, hip joint and fingers. The disease has been considered incurable until now. Current treatment methods, such as anti-inflammatory drugs and painkillers, mainly address the symptoms. Often, the only remaining option is an operation to replace the affected joint with an artificial one.

In laboratory tests, the team led by ETH researcher Marcy Zenobi-Wong and Empa researcher Katharina Maniura has now succeeded, together with SINTEF in Norway, in identifying a substance with the potential to halt cartilage degeneration in joints. This substance is the polysaccharide alginate extracted from the stems of brown algae — or more precisely cuvie (Lat. Laminaria hyperborea), which is similar to specific extracellular biomolecules in cartilage.

The researchers chemically modified the alginate with sulfate groups and then added it in dissolved form to cell cultures to examine the reaction of various cell types to the modified polysaccharide. This revealed that alginate sulfate can significantly reduce oxidative stress, which is a frequent cause of cell damage or even cell death, and the more sulfate groups attached to the alginate molecule, the greater this reduction.

Alginate sulfate was also able to suppress the inflammatory reaction, again depending on the number of sulfate groups, and was able to down-regulate the expression of genes that trigger an inflammatory reaction in both human cartilage cells, known as chondrocytes, and in macrophages, the “scavenger cells” of our immune system. The algal molecules should therefore slow down cartilage degeneration. “The hope is that they can even stop this degeneration,” says Empa researcher Markus Rottmar.

The alginate sulfates have so far only been tested in vitro, i.e. in the laboratory with cell cultures. However, the encouraging results mean that research will now continue. The next stage is to test the substances on animals. If this is also successful, clinical trials can then be conducted on people. These tests are, however, laborious and time-consuming. If everything were to work perfectly, it would still be a few years before arthritis patients could be treated with alginate sulfate.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
The GNT Group, a market leader in using algae as natural ingredients for color, has begun construction of an additional spirulina plant at its headquarters in Mierlo, the...
EPA (eicosapentaenoic acid) fortified eggs are developing quite a demand among middle and upper-class consumers in China. With clinical trials demonstrating that EPA can ...
Karen Phillips writes for deeperblue.com that algae are the alveoli in the ocean lungs of our planet, vitally important to the health of the seas as home, food source, sa...
Global Algae Innovations, with headquarters in San Diego, California, and cultivation/production facilities in Lihue, Hawaii, have introduced a new algae harvesting syste...
Algatechnologies Ltd (Algatech), of Kibbutz Ketura, Israel, has become part of the FoodConnects consortium, as winner of a pan-European competition for the Food4Future pr...
The Energy Department (DOE) has announced the selection of six projects for up to $12.9 million in federal funding, entitled, “Project Definition for Pilot- and Demonstra...
Essen, Germany-based Evonik, and Royal DSM, headquartered in Kaiseraugst, Switzerland, have announced their intention to establish a joint venture for omega-3 fatty acid ...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...
Suzanne Michaels, writes for the Las Cruces Sun-News that big implications are resulting from what looks like a small algae research project using the City’s wastewater. ...
The genome of the fuel-producing green microalga Botryococcus braunii has been sequenced by a team of researchers led by a group at Texas A&M AgriLife Research. The r...
Marlene Cimons, nexusmedianews.com reports that researchers at the University of California San Diego and Sapphire Energy have successfully grown a genetically engineered...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...