[ad#PhycoBiosciences AIM Interview]

Research

AgriLife Research

A team of researchers that has been working on getting fuel-grade oil out of algae has received a $2 million National Science Foundation grant to help hasten the process, according to Dr. Tim Devarenne, a Texas A&M AgriLife Research biochemist and collaborator on the project. (Texas AgriLife Research photo by Kathleen Phillips)

Texas A&M Scientists Funded to Speed up B. brauni

September 17, 2012
AlgaeIndustryMagazine.com

Ateam of researchers at Texas A&M has received a $2 million National Science Foundation grant to help speed up the process getting fuel-grade oil out of algae from the oil-rich alga, Botryococcus braunii.

Known by scientists for more than 100 years, B. braunii is the shirker of the algae world, seemingly floating aimlessly in bubbling tanks of water in no hurry to grow up and be pressed into oil. Other algae go through life as self-starters on a fast-track to success but don’t produce oil like B. braunii. The researchers want the useful traits from each to commingle.

“We’re interested in taking the genetic information out of the slow-growing alga – the genetic information for producing the hydrocarbons – and transferring that into a faster growing alga,” said Dr. Tim Devarenne, a Texas A&M AgriLife Research biochemist and collaborator on the project. “Then maybe we can more economically produce these oils.”

For his part of the study, Devarenne will study the B. braunii’s molecular biology to find out what genes are responsible for production of the oil. His lab will also try to understand the function of those genes and how they contribute to the production of the oil. “By understanding the molecular mechanisms, we can maybe manipulate the algae to produce more or better oil,” he said.

Another key aspect to these studies is encouraging B. braunii to live life in the fast lane, Devarenne explained, using a device invented by Dr. Arum Han, lead researcher on the project and a professor of electrical engineering at Texas A&M University. Called a “microfluidic lab-on chip,” the device is about the size of a business card but has hundreds to thousands of microscopic wells, Devarenne said.

“These little wells can each hold an individual alga cell, and we can treat each well differently in terms of media compositions or light amounts, for example,” he explained. “So we can see how different parameters affect growth rate, oil production and biomass accumulation.

“In that little microfluidic device, we can screen hundreds to thousands of different growth conditions at once and do in a week’s time what in a normal lab atmosphere would take probably a year to screen. Essentially we can miniaturize everything and screen high volumes of algae to find optimal growth conditions to make the best amount of oil,” Devarenne said.

When the fast-growing traits have been combined with the hydrocarbon-producing capabilities in one alga, team member Dr. Tzachi Samocha with AgriLife Research in Corpus Christi will help determine how to grow it on a large scale.

Upon completion of those studies, Devarenne said, the team may work with the fuel industry to scale up production even farther.“If we can produce an alga that produces high amounts of oil and grows fast,” he said, “an industry partner could grow large amounts of it, extract the oil, convert that oil into gasoline or diesel fuel and sell it just like at a normal gasoline pump.”

Also collaborating on the project are Dr. David Stern from the Boyce Thompson Institute for Plant Research and Dr. Jefferson Tester from Cornell University.

–Kathleen Phillips, ka-phillips@tamu.edu

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Tess Riley writes in TheGuardian.com about how spirulina may be able to combat malnutrition in developing countries. Spirulina is one of the oldest life forms on Earth, c...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
Fort Myers, FL-based Algenol, and India's Reliance Industries Ltd., have deployed India’s first Algenol algae production platform. The demonstration module is located nea...
Researchers Greg O’Neil of Western Washington University and Chris Reddy of Woods Hole Oceanographic Institution (WHOI), have exploited an unusual and untapped class of c...
In a recent study, published in PLOS ONE Journal, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
Solazyme has announced that total revenue for the fourth quarter of 2014 was $14.5 million, compared with $11.3 million in the fourth quarter of 2013, an increase of 29%....
Don Willmott writes in Huffington Post about Nevada-based Algae Systems, which has built a test plant on Alabama's Mobile Bay to not only turn algae into diesel fuel but ...
Sebastian Rich reports on PBS Newshour about the Central African Republic city of Bangui, which has been caught in the crossfire between warring Muslim and Christian grou...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
Japan’s IHI Corporation has announced that they have succeeded in stably cultivating a modified high-output algal strain in a 1,500 square meter open pond in Kagoshima, K...
While aquafarmers in Maine have been harvesting seaweed for nearly 80 years, for a variety of uses and products, in recent years wild harvests have not been able to meet ...
Using microalgae to capture CO2 is a complex process, especially in flue gas environments, reports an editorial by IEA Clean Coal Centre in worldcoal.com. There are many ...