[ad#PhycoBiosciences AIM Interview]

Research

Texas A&M’s Algae Research Facility at Crane High, in Pecos, Texas

Texas A&M’s Algae Research Facility at Crane High, in Pecos, Texas

Texas A&M Algae Biofuel Tests Show Promise

April 1, 2012
AlgaeIndustryMagazine.com

Texas AgriLife Research comprises 13 research centers from El Paso to Beaumont and Amarillo to Weslaco, along with associated research stations, all dealing with research into the agricultural issues of: plant diseases and animal parasites, grass and forage production, and the economical feeding of dairy and beef cattle. A member of The Texas A&M University System, AgriLife Research has 1,700 employees, 375 of which are doctoral-level scientists.

Over the past two years, Texas AgriLife Research has been operating as a component of a $44 million, multi-institution, multi-state consortium funded by the U.S. Department of Energy to conduct algae research and development for commercial, domestic biofuel production. Additional funding was awarded in part as a result of research advancements at AgriLife’s Pecos facility and expands the scope of study to include algal coproducts, such as feedstock for the livestock and mariculture industries.

Kelly Tucker has written an update in UWire outlining current research at Texas A&M University to improve algae biofuels using a method to create a hydrocarbon fuel similar to gasoline or diesel that is more energy dense, which the researchers claim makes for a more versatile fuel source that is usable in aircraft.

The research group also aims to create methods that would generate higher yields from algae. “For the algae to be useful as a biofuel, there are some technical barriers. For example, extracting lipids is very difficult because it is very costly,” said Shangxian Xie, plant pathology graduate student. “Right now we are developing technology to harvest the algae more cheaply by cultivating it into a pellet so you only need a filter to harvest it.”

Xie said this new method allows for a three-to-four-fold increase in yield. Another method the research group is examining involves photorespiration, an alternative to photosynthesis, where sugar is combined with oxygen. Photorespiration is not as efficient as photosynthesis and typically causes a quarter of the carbon to be lost. Joshua Yuan, assistant professor in the department of plant pathology and microbiology, is exploring ways to use this lost carbon as an energy source.

“The pathway takes the excess carbon normally lost and shunts it towards hydrocarbon synthesis. So now you have a system that just needs light, water, carbon dioxide and some minimal nutrients to produce hydrocarbons,” said Ryan Syrenne, molecular and environmental plant sciences graduate student.

Other methods currently studied by the researchers to improve algae’s use as a biofuel source involve using genes from various algae species to create a type of algae that excels in efficiency, growth and yield.

Yuan said by the time algae biofuel becomes marketable, at around $5 per gallon in the next decade or two, it will be a much cheaper and viable option compared to gasoline that will possibly sport a double-digit price tag by then. In the meantime, “My next dream is artificial photosynthesis,” Yuan said. “We are only limited by our resources.”

Read More

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Solazyme, Inc. and Versalis, the chemical subsidiary of Eni S.p.A., one of the world’s largest oil and gas companies, today announced a partnership to expand the commerci...
Designboom.com is showcasing the “Spirulina Fountain” designed by bureau A. The installation constitutes a hybrid, fusing the production basins of the intense blue-green ...
In a recent study, published in PLOS ONE Journal, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
The Biotechnology Industry Organization (BIO) has named Solazyme CEO and co-founder Jonathan S. Wolfson as the recipient of its 2015 George Washington Carver Award for in...
Melissae Fellet reports in Chemical & Engineering News that new materials containing ultraviolet-absorbing molecules found in algae and reef-fish mucus could serve as...
Nitrogen and phosphate nutrients are among the biggest costs in cultivating algae for biofuels. Sandia National Laboratories molecular biologists Todd Lane and Ryan Davis...
The Asahi Shimbun reports that an experimental facility to produce oil from algae was constructed on former farmland that was abandoned after the March 2011 Great East Ja...
Mark Harris writes in the Guardian about a pilot project in Las Cruces, New Mexico, where Dr. Peter Lammers, a professor in algal bioenergy at Arizona State University, a...
The World Health Organization (WHO) estimates over 200 million people worldwide are exposed to arsenic concentrations in drinking water that exceed the guideline limit of...
Researchers at Arizona State University (ASU) and engineers at Salt River Project (SRP), one of the nation's largest public power utilities, are conducting joint research...
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...