[ad#PhycoBiosciences AIM Interview]

Research

Texas A&M’s Algae Research Facility at Crane High, in Pecos, Texas

Texas A&M’s Algae Research Facility at Crane High, in Pecos, Texas

Texas A&M Algae Biofuel Tests Show Promise

April 1, 2012
AlgaeIndustryMagazine.com

Texas AgriLife Research comprises 13 research centers from El Paso to Beaumont and Amarillo to Weslaco, along with associated research stations, all dealing with research into the agricultural issues of: plant diseases and animal parasites, grass and forage production, and the economical feeding of dairy and beef cattle. A member of The Texas A&M University System, AgriLife Research has 1,700 employees, 375 of which are doctoral-level scientists.

Over the past two years, Texas AgriLife Research has been operating as a component of a $44 million, multi-institution, multi-state consortium funded by the U.S. Department of Energy to conduct algae research and development for commercial, domestic biofuel production. Additional funding was awarded in part as a result of research advancements at AgriLife’s Pecos facility and expands the scope of study to include algal coproducts, such as feedstock for the livestock and mariculture industries.

Kelly Tucker has written an update in UWire outlining current research at Texas A&M University to improve algae biofuels using a method to create a hydrocarbon fuel similar to gasoline or diesel that is more energy dense, which the researchers claim makes for a more versatile fuel source that is usable in aircraft.

The research group also aims to create methods that would generate higher yields from algae. “For the algae to be useful as a biofuel, there are some technical barriers. For example, extracting lipids is very difficult because it is very costly,” said Shangxian Xie, plant pathology graduate student. “Right now we are developing technology to harvest the algae more cheaply by cultivating it into a pellet so you only need a filter to harvest it.”

Xie said this new method allows for a three-to-four-fold increase in yield. Another method the research group is examining involves photorespiration, an alternative to photosynthesis, where sugar is combined with oxygen. Photorespiration is not as efficient as photosynthesis and typically causes a quarter of the carbon to be lost. Joshua Yuan, assistant professor in the department of plant pathology and microbiology, is exploring ways to use this lost carbon as an energy source.

“The pathway takes the excess carbon normally lost and shunts it towards hydrocarbon synthesis. So now you have a system that just needs light, water, carbon dioxide and some minimal nutrients to produce hydrocarbons,” said Ryan Syrenne, molecular and environmental plant sciences graduate student.

Other methods currently studied by the researchers to improve algae’s use as a biofuel source involve using genes from various algae species to create a type of algae that excels in efficiency, growth and yield.

Yuan said by the time algae biofuel becomes marketable, at around $5 per gallon in the next decade or two, it will be a much cheaper and viable option compared to gasoline that will possibly sport a double-digit price tag by then. In the meantime, “My next dream is artificial photosynthesis,” Yuan said. “We are only limited by our resources.”

Read More

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Nutritionaloutlook.com this month gives a well-rounded survey of how algae’s uses in food, beverage, and supplements keep expanding. Here is an excerpt: Thanks to the 201...
Using a malaria parasite protein produced from algae, paired with an immune-boosting cocktail suitable for use in humans, researchers at UC San Diego School of Medicine g...
The European (FP7) algae project Sustainable PoLymers from Algae Sugars and Hydrocarbons (SPLASH) has been developing a platform technology for the conversion of third ge...
Simris Alg, a pioneering agribusiness producing omega-3 from farmed algae, has been declared one of Sweden’s 33 hottest companies in new technology. The renowned list is ...
Nitrogen and phosphate nutrients are among the biggest costs in cultivating algae for biofuels. Sandia National Laboratories molecular biologists Todd Lane and Ryan Davis...
The Asahi Shimbun reports that an experimental facility to produce oil from algae was constructed on former farmland that was abandoned after the March 2011 Great East Ja...
The U.S. Department of Energy (DOE) has awarded Arizona State University (ASU) a three-year, $1 million grant to fund the Atmospheric Carbon Dioxide Capture and Membrane ...
Kailua Kona-based Cyanotech Corporation announced financial results for the third quarter and first nine months of fiscal year 2016, ended December 31, 2015. For the thir...
Professor David Sinton of the University of Toronto’s Faculty of Applied Science & Engineering has been awarded a 2015 E.W.R. Steacie Memorial Fellowship from the Nat...
A Memorandum of Agreement has been signed by Aerospace Malaysia Innovation Centre (AMIC), Airbus Group, University of Malaya, University Malaysia Terengganu, The Universi...