[ad#PhycoBiosciences AIM Interview]

Process

TANS testing cyanobacteria biofertilizer for developing countries

September 26, 2013
AlgaeIndustryMagazine.com

Solomon Yigrem, Thin Air field manager in Ethiopia, checks on the cyanobacterial biofertilizer production system. Mixing soil with original cultures and seeding them in shallow ponds produce the blue-green algae biofertilizer.

Solomon Yigrem, Thin Air field manager in Ethiopia, checks on the cyanobacterial biofertilizer production system. Mixing soil with original cultures and seeding them in shallow ponds produce the blue-green algae biofertilizer. Photo by: Endalkachew Wolde-meskel/Thin Air Nitrogen Solutions

Eliza Villarino writes in devex.com about Jessica Gwyn Davis, a professor of soil and crop sciences at the Colorado State University, who co-founded Thin Air Nitrogen Solutions (TANS) in 2008 to develop cyanobacteria-based fertilizer as an economic alternative for the developing world.

TANS is currently testing their cyanobacteria cultivation technology in Ethiopia, using soil containing original cultures and seeding them in shallow ponds. Since the Ethiopian government ended its fertilizer subsidy program in the late 1990s, fertilizer use has declined, and even the less expensive urea fertilizer has become too expensive for many smallholder farmers, the vast majority of whom survive on less than $2 daily. Without returning nutrients to the soil after long periods of farming, soil fertility declines, leading to lower crop yields and lower income for farmers with an increase in malnutrition.

According to Davis, when asked how much they were willing to pay for cyanobacteria-based fertilizer of the same weight as urea fertilizer, farmers quoted 200 Ethiopian birrs and said they were willing to pay more per kilogram of nitrogen of the biofertilizer “because they recognize the value of the organic matter in reversing soil degradation and improving soil fertility.”

Based on tests on maize, kale, pepper, lettuce and tomato, TANS found that yields from those receiving cyanobacterial biofertilizer are at par or exceeded outcomes from urea application and double those with zero fertilizer use. There was also an increase in micronutrient concentrations found in plants’ edible portions, such as zinc (more than double), iron (50 percent increase), and beta-carotene (at least twice the amount), as compared to urea-applied and control crops.

Thin Air Nitrogen Solutions hopes to begin producing and testing cyanobacterial biofertilizer in southern Ethiopia in 2014, engaging women smallholder farmers as producers so that they can enhance their incomes and status in the communities. It will also measure impacts on income, food security and gender equity.

Currently, TANS is working off a grant from the U.S. Agency for International Development’s Development Innovation Ventures to test the technology, and the group hopes to win another grant from DIV to build on its trials. It has also received backing from the National Collegiate Inventors and Innovators Association.

Davis said she and her colleagues are interested in collaborating with private companies, nonprofits and government agencies “with goals similar to ours.”

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
Designboom.com is showcasing the “Spirulina Fountain” designed by bureau A. The installation constitutes a hybrid, fusing the production basins of the intense blue-green ...
Hammenhög, Sweden-based agribusiness Simris Alg has announced the launch of its first consumer products. The algae farmers’ exclusive omega-3 supplements and superfoods w...
Jeff Gelski writes in foodbusinessnews.net that algae oil is now in the toolbox of alternative oils shown to replace partially hydrogenated oils (PHOs), which cause trans...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
In Japan, the Algae Biomass Energy System Development Research Center, headed by Professor Makoto Watanabe, was established at the University of Tsukuba on July 1. The ne...
Scientists have been investigating the likely future impact of changing environmental conditions on ocean phytoplankton, which forms the basis of all the oceans' food cha...
Dr. Gloria Naa Dzama Addico and Kweku Amoako Atta deGraft-Johnson write in Graphic Online about the plight of the fisher folks in Ghana — in the throes of depleting fish ...
A new $1 million relationship between Michigan State University and ExxonMobil will expand research in the fundamental science to advance algae-based fuels. Dr. David Kra...
Nevele, Belgium-based TomAlgae is developing freeze-dried microalgae for feed in shrimp hatcheries. The company has created its own microalgal “cultivar” and manufactures...
S V Krishna Chaitanya writes for the New Indian Express that a scientist from Chennai, the capital city of the Indian state of Tamil Nadu, in South India, is playing a ke...