Special Report: Spirulina Part 5

Development of a Spirulina Industry – Production

April 20, 2011, by Robert Henrikson
AlgaeIndustryMagazine.com

Over the past 30 years, the spirulina industry has been supplied by many small to large-scale farms around the world, using a wide range of algae production systems:

  • Lake harvesting of spirulina growing in natural lakes.
  • Commercial farms using outdoor raceway pond systems.
  • Enclosed photobioreactors, tubular or tank systems.
  • Integrated commercial production farms.
  • Village farms in the developing world with appropriate technology.
  • Microfarms, family and community size production systems.

Lake Harvesting and Cultivation Systems

Chad: Indigenous Kanembu women have seasonally harvested spirulina dihé from the alkaline ponds near lake Chad. The UN has estimated annual production of at least 250 dry tons per year sold on the local market. In recent years, improved harvesting and drying techniques have been introduced.

Mexico: Spirulina grows naturally in lake Texcoco near Mexico City. In the 1970s, Sosa Texcoco built the first commercial facility to harvest and dry spirulina, exporting to the USA and Japan beginning in 1979. A section of the lake was channelized in a caracol shape to cultivate naturally growing spirulina, harvested through screens and spray-dried into a powder. Spirulina Mexicana was the world’s largest producer through the 1980s, but closed by 1995.

Spirulina Mexicana’s Caracol in Lake Texcoco near Mexico City.

Spirulina Mexicana’s Caracol in Lake Texcoco near Mexico City. Lake harvesting, dewatering and drying spirulina in Myanmar. Courtesy of Min Thein.

Myanmar: Commercial harvest began in 1988 on several alkaline volcanic lakes that enjoy natural spirulina blooms. By seasonally harvesting and processing spirulina from natural lakes, Myanmar Pharmaceutical Industries produces about 150 dry tons of spirulina in 60 days from February to April each year. Dry chips, tablets and packaged products are distributed in Myanmar.

Commercial Outdoor Pond Cultivation Systems

Most current commercial farms over the past 30 years have been designed with shallow raceway ponds circulated by paddlewheels. Ponds vary in size up to 5000 square meters (about 1.25 acres) or larger, and water depth is typically 15 to 25 centimeters. They require more capital investment than lake farms, and operate at higher efficiency and quality control.

Earthrise Nutritionals, California, USA: Earthrise was established in 1981 and over the next decade expanded to cover 108 acres. Owned by Dainippon Ink & Chemicals of Japan, by the mid 1990’s Earthrise had the world’s largest production capacity of 500 tons per year.

Earthrise Nutritionals in Imperial Valley California USA. Cyanotech on the Kona Coast, Hawaii.

Earthrise Nutritionals in Imperial Valley California USA. Cyanotech on the Kona Coast, Hawaii.

Cyanotech, Hawaii, USA: Cyanotech opened in 1985 on the Big Island of Hawaii with a capacity of 400 tons of spirulina per year as well as haematococcus for astaxanthin for human and animal food supplements.

Boonsom Farm, Thailand: Boonsom Farm near Chiang Mai is a medium size (40,000m2) family-owned spirulina farm, producing finished products for the regional market in Thailand and Asian countries for the past 20 years. Boonsom Farm is promoted as an algae-tourism destination, offering a tour, samples of spirulina foods and a spirulina health spa.

Boonsom Spirulina Farm near Chiang Mai Thailand. Parry Nutraceutical spirulina ponds in India

Boonsom Spirulina Farm near Chiang Mai Thailand. Parry Nutraceutical spirulina ponds in India

Parry Nutraceuticals, India: In 1990 India established a national standard specification for food grade spirulina. Parry Nutraceuticals began spirulina production in Tamilnadu in 1996 and expanded into astaxanthin from haematococcus in 2003.

Hainan Island China: Today China has numerous producers, with an annual capacity in the thousands of tons, the world’s largest spirulina producer for both the domestic market and a major world exporter.

Some of the largest Chinese spirulina farms are on Hainan Island. Yaeyama on Okinawa Island, Southern Japan grows chlorella algae in circular ponds.

Some of the largest Chinese spirulina farms are on Hainan Island. Yaeyama on Okinawa Island, Southern Japan grows chlorella algae in circular ponds.

Taiwan: Various farms have produced several hundred tons of spirulina and chlorella per year. Depending the market, some may shift to growing chlorella when its price is higher.

Other farms: There is reported commercial production in Australia, Cuba, Chile, Vietnam, Israel, Bangladesh, Philippines, Martinique, Peru, Brazil, Spain, Portugal, Chad and other countries. Spirulina farms are multiplying around the world.

Chlorella Farms: Many early chlorella farms developed circular ponds. Chlorella is a batch growing and harvest system, unlike the continuous growing and harvesting of spirulina all season long.

Photobioreactors, Tubes and Tanks

Spirulina grows well in sunny, warm alkaline waters and can be continuously cultivated outdoors in a pure culture. Most other algae are subject to contamination by competing algae and maintaining a pure culture outdoors is far more challenging.

Photobioreactors, tube, plate and tank systems have been developed to grow algae in closed systems in colder climates, to prevent contamination, or grow higher value algae that require more cultivation control. Companies may use bioreactors for high-value algae and their extracts such as chlorella, haematococcus, nannochloropsis, and isochrysis for pharmaceutical, industrial, cosmetic and aquacultural applications.

Because photobioreactors and closed systems have been more costly than open pond raceway systems, they have been considered too costly, not competitive and are not generally used for commercial spirulina production.

Integrated Production Farms

Current farms designed to produce high quality spirulina have high production costs. To lower costs, future farms need to integrate nutrient resources, refine production systems and produce a variety of end products, from valuable extracts to inexpensive protein.

Future farms may be sited on alkaline lakes where algae grows on natural carbon nutrients. Other farms may locate near oil refineries or industrial centers using surplus industrial CO2 and other nutrients. Hot water from energy plants, or hot geothermal water, may provide heat to grow algae year-round in cooler climates. Still other farms may be co-located next to animal feed lots, digesting and recycling animal waste nutrients to grow algae.

Integrated Farm

Farms may build integrated aquaculture systems. Fresh wet algae can be added directly to fish ponds or to a dry feed ration. Integrated farms could cultivate a variety of algae, shifting species during warm and cooler seasons, and produce a variety of products. Some may specialize in pharmaceutical compounds, enzymes or medicines. Biochemical plants will make concentrated vitamin, fatty acid and pigment extracts.

Village Farms in the Developing World

As a supplement, spirulina algae offers remarkable benefits for undernourished people, especially children. Over the past 30 years, numerous projects have been growing spirulina in developing world villages in Africa, Asia and South America.

The Integrated Village System in Farende, Togo. This remote village participated in an experimental appropriate technology project developed by Dr. Ripley D. Fox. Solar panels powered pond paddlewheels. A small 100 m2 pond could supplement the diet of 100 children a day. Pouring pond water through a screen, spirulina became a paste, then solar dried and distributed at the health clinic. Undernourished children took spirulina as a daily supplement. One tablespoon a day mixed with water brought remarkable results.

The design for the Integrated Health and Energy System won the prestigious 1987 European Award for Appropriate Environmental Technology, sponsored by the EEC and the UN Environmental Program.

Tending the spirulina basins in Togo. Solar panels and dryer in back. Home cultivation and harvesting in a village in Tamil Nadu, India. (Courtesy of C.V. Seshadri).

Tending the spirulina basins in Togo. Solar panels and dryer in back. Home cultivation and harvesting in a village in Tamil Nadu, India. (Courtesy of C.V. Seshadri).

Family scale cultivation in Tamil Nadu, India. A government sponsored project in Southern India provided small backyard basins to women for family nutrition with the goal to develop into local village networks to combat Vitamin A and general immune deficiency conditions. India has conducted a joint effort with many government agencies covering all aspects of spirulina, from simple cultivation basins to large-scale commercial farms. The government has sponsored large-scale nutrition studies with animals and humans and has investigated therapeutic uses.

Family and Community Microfarms

A common request over the past 30 years is “How can I grow spirulina at home or in my community?” Today microfarms are springing up around the world.

Over this past decade, over 50 small spirulina producers have emerged across France, In 2004 a spirulina school was established at the CFPPA Center in Hyères, engaging more people to join this community. In 2010 most of the French producers became members of the Fédération des Spiruliniers de France, an important step towards good practices, HACCP and eventually organic production.

Spirulina Domaine Traverse Greenhouse in the south of France, with products.

Spirulina Domaine Traverse Greenhouse in the south of France, with products.

French spirulina farmers grow inside greenhouses, typically harvest through screens and squeeze out water, press the thick paste through a spaghetti noodle machine, extruding rows of noodles on sheets that are loaded into solar-assisted dryers. Dried noodles can be chopped into smaller pieces, ground using a coffee grinder into granules and powder and pressed into tablets. Spirulina noodles and tablets are packaged in bottles or foil packs.

A manual explaining how to cultivate on a small scale is Cultivez Votre Spiruline (Grow Your Own Spirulina), available as a free download at algaecompetition.com. The author, Jean-Paul Jourdan, operated spirulina farms in Europe and Africa for many years and has developed low cost, low technology, simple and effective solutions.

Jean Paul Jourdan shows how to harvest, dry and package spirulina grown at his personal microfarm.

Jean Paul Jourdan shows how to harvest, dry and package spirulina grown at his personal microfarm.

Although microfarms may not enjoy the same production cost savings as large-scale production, they can make up the difference by selling direct to local clients. A commercial farm producing finished products gets about 35% of the retail price, 65% going to distributors, wholesalers and retailers. A microfarmer, selling direct to the local community can capture up to 100% of the value chain.

Whereas algae biofuel ventures forecast huge production scale to achieve commercial viability, spirulina represents an algae that makes small scale cultivation viable. This opens up the possibility of a future with many small decentralized algae production systems, even in urban and surburban areas.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...
Karen Phillips writes for deeperblue.com that algae are the alveoli in the ocean lungs of our planet, vitally important to the health of the seas as home, food source, sa...
Algae.Tec has announced that, with the completion of the US$1M injection by Gencore, their nutraceutical plant upgrade in Cummings, Georgia, is progressing ahead of sched...
Dan Wood, at the University of Connecticut, writes that assistant extension educator of marine aquaculture at UConn’s Avery Point Campus, Anoushka Concepcion, spoke about...
The University of Kentucky (UK) Center for Applied Energy Research’s (CAER) Biofuels and Environmental Catalysis Group has received a $1.2 million U.S. Department of Ener...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...
PhysOrg reports that recent efforts have been made by researchers in Japan to reduce the cost of biodiesel production by using pulsed electric fields (PEF) to extract hyd...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
The Department of Energy has just announced $22 million in funding through the Advanced Research Projects Agency-Energy (ARPA-E) for 18 innovative projects as part of the...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...