[ad name=”PhycoBiosciences AIM Interview”]

Research

Space Florida researching algae cultivation prospects on Mars

February 7, 2014
AlgaeIndustryMagazine.com

Deborah Wells, vice president of process development for Neuprene, explores algae as a substitute for petroleum in the near future.

Deborah Wells, vice president of process development for Neuprene, explores algae as a substitute for petroleum in the near future.

Matthew Richardson of the Orlando Business Journal writes that deep within the Space Life Science Lab near Florida’s Kennedy Space Center is a Mars simulation chamber, high-tech plant incubators and liters upon liters of green and blue algae. This comprises one of many cutting-edge research projects housed in a 109,000-square-foot lab complex that’s all about space, incorporating 145 offices and cubicles, 29 science labs and eight hardware labs; five conference rooms and seven environmental growth chambers.

Space Florida was created as a special district that uniquely serves as the single point of contact for all space-related functions of the State of Florida, and serves the civil, military and commercial sectors as well.

In Deborah Wells’ lab, the vice president of process development for Indialantic-based Neuprene is exploring algae’s potential. Around the lab are several large flasks and 20-liter carboys each holding a bubbling green liquid being researched as a petroleum substitute used to create everyday items. “We found a biological technology that will produce the same chemical so you can make tires, gloves and water bottles,” she says. “The chemical comes from a biological organism instead of making it from petroleum.”

Andrew Schuerger, a University of Florida aerobiology and Mars astrobiology professor, has created a mini Mars simulation chamber – the only one in Florida. “It’s a very capable instrument,” Schuerger said of the chamber he spent 10 years building. “It can recreate five conditions on the surface of Mars. It’s a pressure chamber so it can pump down to the low atmospheric pressure on the surface of Mars.”

The $2.5 million grant-funded chamber also can imitate the ultra-harsh ultraviolet radiation of Mars, which is 1,000 times more aggressive than Earth’s due to the lack of an ozone layer. The purpose of this device is to test the survival of microorganisms on Mars’ surface and, according to his research, a few can stand the intense pressure, but none so far can withstand the ultraviolet rays.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Designboom.com is showcasing the “Spirulina Fountain” designed by bureau A. The installation constitutes a hybrid, fusing the production basins of the intense blue-green ...
In a recent study, published in PLOS ONE Journal, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
Caroline Scott-Thomas reports on Food Navigator about an online algae discussion on the social media site Reddit where Mars' chief agricultural officer Howard-Yana Shapir...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
Using a malaria parasite protein produced from algae, paired with an immune-boosting cocktail suitable for use in humans, researchers at UC San Diego School of Medicine g...
Solazyme has announced that total revenue for the fourth quarter of 2014 was $14.5 million, compared with $11.3 million in the fourth quarter of 2013, an increase of 29%....
Don Willmott writes in Huffington Post about Nevada-based Algae Systems, which has built a test plant on Alabama's Mobile Bay to not only turn algae into diesel fuel but ...
Cellana, Inc., with operations in San Diego and Kailua-Kona, Hawaii, has announced that David Anton, Ph.D., has been appointed Chief Operating Officer and elected to the ...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
Jeff Gelski writes in foodbusinessnews.net that algae oil is now in the toolbox of alternative oils shown to replace partially hydrogenated oils (PHOs), which cause trans...
Algae.Tec has announced a collaboration agreement for the commercialization of its algae production technology with Larimar Energy SRL, of the Dominican Republic. The ene...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Scientific representatives from the EnAlgae consortium are announcing preliminary results this week from a key algal carbon capture project in the works at Britain’s larg...
SciDev.Net’s South Asia desk reports that Indian scientists working on producing biofuel from algae cultured in municipal wastewater are enthused by the findings of a rec...