[ad name=”PhycoBiosciences AIM Interview”]

Research

Space Florida researching algae cultivation prospects on Mars

February 7, 2014
AlgaeIndustryMagazine.com

Deborah Wells, vice president of process development for Neuprene, explores algae as a substitute for petroleum in the near future.

Deborah Wells, vice president of process development for Neuprene, explores algae as a substitute for petroleum in the near future.

Matthew Richardson of the Orlando Business Journal writes that deep within the Space Life Science Lab near Florida’s Kennedy Space Center is a Mars simulation chamber, high-tech plant incubators and liters upon liters of green and blue algae. This comprises one of many cutting-edge research projects housed in a 109,000-square-foot lab complex that’s all about space, incorporating 145 offices and cubicles, 29 science labs and eight hardware labs; five conference rooms and seven environmental growth chambers.

Space Florida was created as a special district that uniquely serves as the single point of contact for all space-related functions of the State of Florida, and serves the civil, military and commercial sectors as well.

In Deborah Wells’ lab, the vice president of process development for Indialantic-based Neuprene is exploring algae’s potential. Around the lab are several large flasks and 20-liter carboys each holding a bubbling green liquid being researched as a petroleum substitute used to create everyday items. “We found a biological technology that will produce the same chemical so you can make tires, gloves and water bottles,” she says. “The chemical comes from a biological organism instead of making it from petroleum.”

Andrew Schuerger, a University of Florida aerobiology and Mars astrobiology professor, has created a mini Mars simulation chamber – the only one in Florida. “It’s a very capable instrument,” Schuerger said of the chamber he spent 10 years building. “It can recreate five conditions on the surface of Mars. It’s a pressure chamber so it can pump down to the low atmospheric pressure on the surface of Mars.”

The $2.5 million grant-funded chamber also can imitate the ultra-harsh ultraviolet radiation of Mars, which is 1,000 times more aggressive than Earth’s due to the lack of an ozone layer. The purpose of this device is to test the survival of microorganisms on Mars’ surface and, according to his research, a few can stand the intense pressure, but none so far can withstand the ultraviolet rays.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Flint Michigan’s water supply was switched from Lake Huron to the Flint River in 2014. The Flint is so notoriously dirty that some locals call it the Filth River. The cha...
The Consortium for Algal Biofuel Commercialization (CAB-Comm), led by the University of California, San Diego, has just released its final report, detailing the many acco...
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
Bioenergy-news.com reports that Volkswagen showcased its algae biogas-powered vehicle at a biogas project based in El Torno Chiclana, a town in south-west Spain. The test...
For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less...
Agcore Technologies LLC, producer of Agcore Spirulina, has announced that their 2016 expansion project to support their growing aquafeed demand is in the completion proce...