Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Scale Up

Scottish scientists scaling up C-phycocyanin

February 3, 2017
AlgaeIndustryMagazine.com

Natural blue dyes are challenging to create, as there are few sources of blue pigment in the natural world.

Nutraceutical Business Review reports that Scottish research scientists are scaling the ability to produce large quantities of a blue pigment-protein called C-phycocyanin (C-PC) to be able mass produce a high-value natural blue dye for use in the food, pharmaceutical and other industries.

Global demand for natural blue dye is expected to increase ten-fold in the next two years from the food industry alone, to a market worth about £350 million ($377,300,000 US). The colorant, which is derived from spirulina algae, is the preferred source of natural blue for industry. It is sought after to replace artificial colorants, which are quickly becoming unpopular with consumers.

Natural blue dyes are challenging to create as there are few sources of blue pigment in the natural world, and formulations are difficult and expensive to create in large quantities.

A £200,000 award from the Industrial Biotechnology Innovation Centre (IBioIC) will boost a research partnership between industrial biotech firm Scottish Bioenergy and scientists at the University of Edinburgh, to develop a large-scale process to extract C-PC from the spirulina.

Scottish Bioenergy, which specializes in commercial production of C-PC, has been working with experts in the University’s School of Biological Sciences on collaborative projects since 2012. The partnership has been accelerated by ongoing support from Edinburgh Research & Innovation (ERI), the University’s commercialization and industry engagement arm.

Scottish Bioenergy has recently overcome important technical obstacles and challenges linked to the scale of production. In this latest project, funded by IBioIC’s Micro Accelerator Programme, the team will identify and optimize techniques for extracting the pigment protein, and develop economically feasible methods for producing large volumes of C-PC. They will also engineer strains of bacteria to produce high yield and high purity C-PC.

Dr. Alistair McCormick of the University of Edinburgh’s School of Biological Sciences, who is taking part in the project, said: “We’re pleased to be embarking on the next phase of development for this sought-after pigment protein. This is an interesting scientific and engineering challenge and we hope our results will play a significant role in meeting the demand for this valuable product.”

Read More

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called m...
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
Will Yeates reports in DailyPlanet.com that an urban “algae farm” producing low-carbon protein and bio-fuel is one of the highlights on show this week at the future energ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...