twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Scale Up

Scottish scientists scaling up C-phycocyanin

February 3, 2017
AlgaeIndustryMagazine.com

Natural blue dyes are challenging to create, as there are few sources of blue pigment in the natural world.

Nutraceutical Business Review reports that Scottish research scientists are scaling the ability to produce large quantities of a blue pigment-protein called C-phycocyanin (C-PC) to be able mass produce a high-value natural blue dye for use in the food, pharmaceutical and other industries.

Global demand for natural blue dye is expected to increase ten-fold in the next two years from the food industry alone, to a market worth about £350 million ($377,300,000 US). The colorant, which is derived from spirulina algae, is the preferred source of natural blue for industry. It is sought after to replace artificial colorants, which are quickly becoming unpopular with consumers.

Natural blue dyes are challenging to create as there are few sources of blue pigment in the natural world, and formulations are difficult and expensive to create in large quantities.

A £200,000 award from the Industrial Biotechnology Innovation Centre (IBioIC) will boost a research partnership between industrial biotech firm Scottish Bioenergy and scientists at the University of Edinburgh, to develop a large-scale process to extract C-PC from the spirulina.

Scottish Bioenergy, which specializes in commercial production of C-PC, has been working with experts in the University’s School of Biological Sciences on collaborative projects since 2012. The partnership has been accelerated by ongoing support from Edinburgh Research & Innovation (ERI), the University’s commercialization and industry engagement arm.

Scottish Bioenergy has recently overcome important technical obstacles and challenges linked to the scale of production. In this latest project, funded by IBioIC’s Micro Accelerator Programme, the team will identify and optimize techniques for extracting the pigment protein, and develop economically feasible methods for producing large volumes of C-PC. They will also engineer strains of bacteria to produce high yield and high purity C-PC.

Dr. Alistair McCormick of the University of Edinburgh’s School of Biological Sciences, who is taking part in the project, said: “We’re pleased to be embarking on the next phase of development for this sought-after pigment protein. This is an interesting scientific and engineering challenge and we hope our results will play a significant role in meeting the demand for this valuable product.”

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less...
An unprecedented harmful algal bloom off the coast of New England this fall provided a unique opportunity for Waterville, Maine-based Colby College students studying at B...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Fraunhofer-Gesellschaft reports in Science Daily that two algae species survived 16 months on the exterior of the International Space Station (ISS) despite extreme temper...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
Suzanne Michaels, writes for the Las Cruces Sun-News that big implications are resulting from what looks like a small algae research project using the City’s wastewater. ...