Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Scale Up

Scottish scientists scaling up C-phycocyanin

February 3, 2017
AlgaeIndustryMagazine.com

Natural blue dyes are challenging to create, as there are few sources of blue pigment in the natural world.

Nutraceutical Business Review reports that Scottish research scientists are scaling the ability to produce large quantities of a blue pigment-protein called C-phycocyanin (C-PC) to be able mass produce a high-value natural blue dye for use in the food, pharmaceutical and other industries.

Global demand for natural blue dye is expected to increase ten-fold in the next two years from the food industry alone, to a market worth about £350 million ($377,300,000 US). The colorant, which is derived from spirulina algae, is the preferred source of natural blue for industry. It is sought after to replace artificial colorants, which are quickly becoming unpopular with consumers.

Natural blue dyes are challenging to create as there are few sources of blue pigment in the natural world, and formulations are difficult and expensive to create in large quantities.

A £200,000 award from the Industrial Biotechnology Innovation Centre (IBioIC) will boost a research partnership between industrial biotech firm Scottish Bioenergy and scientists at the University of Edinburgh, to develop a large-scale process to extract C-PC from the spirulina.

Scottish Bioenergy, which specializes in commercial production of C-PC, has been working with experts in the University’s School of Biological Sciences on collaborative projects since 2012. The partnership has been accelerated by ongoing support from Edinburgh Research & Innovation (ERI), the University’s commercialization and industry engagement arm.

Scottish Bioenergy has recently overcome important technical obstacles and challenges linked to the scale of production. In this latest project, funded by IBioIC’s Micro Accelerator Programme, the team will identify and optimize techniques for extracting the pigment protein, and develop economically feasible methods for producing large volumes of C-PC. They will also engineer strains of bacteria to produce high yield and high purity C-PC.

Dr. Alistair McCormick of the University of Edinburgh’s School of Biological Sciences, who is taking part in the project, said: “We’re pleased to be embarking on the next phase of development for this sought-after pigment protein. This is an interesting scientific and engineering challenge and we hope our results will play a significant role in meeting the demand for this valuable product.”

Read More

More Like This…

Copyright ©2010-2020 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Alexander Richter reports for Geothermal Energy News that, among the many examples offered during a recent conference in Pisa, Italy, on Perspectives and Impact of the Gr...
Globally, an increase in water pollution is pushing scientists and environmental care specialists to seek best ways of preserving and maintaining sources of safe drinking...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
Jack Perry reports for the (Rhode Island) Providence Journal that Matthew Bertin, an assistant professor of biomedical and pharmaceutical sciences at University of Rhode ...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
Biotechnologists from Aarhus University have demonstrated how the rare properties of an atypical light-dependent enzyme can be used with a photo-bio-catalytic continuous ...
Liu Jia reports for the Chinese Academy of Sciences that a “magic soil” made out of modified clays has proven effective in fighting red tide along China’s coastal waters ...
Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind ...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...