Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Scientists find “switch” to increase starch accumulation in algae

November 5, 2018
AlgaeIndustryMagazine.com

Cultivation of the unicellular red alga C.merolae in the laboratory. Credit: Sousuke Imamura

Results from a collaborative study by Tokyo Institute of Technology and Tohoku University, Japan, raise prospects for large-scale production of algae-derived starch, a valuable bioresource for biofuels and other renewable materials.

A “switch” controlling the level of starch content in algae has been discovered by a research team led by Sousuke Imamura at the Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology (Tokyo Tech).

Reported in The Plant Journal, the study focused on the unicellular red alga Cyanidioschyzon merolae. The researchers demonstrated that starch content could be dramatically increased in C. merolae through inactivation of TOR (target of rapamycin), a protein kinase known to play an important role in cell growth.

They observed a notable increase in the level of starch 12 hours after inactivation of TOR through exposure to rapamycin, and this led to a remarkable ten-fold increase after 48 hours.

Importantly, the study details a mechanism underlying this profound increase in starch content. Using a method called liquid chromatography-tandem mass spectrometry (LC-MS/MS), the researchers examined subtle changes in the structure of more than 50 proteins that might be involved in “switching on” the process of starch accumulation. As a result, they pinpointed GLG1 as a key protein of interest. GLG1 acts in a similar way to glycogenin, an enzyme found in yeast and animal cells, which is known to be involved in the initiation of starch (or glycogen) synthesis.

The mechanism will be of immense interest to a wide range of industries seeking to scale up biofuel and value-added biochemicals production. For example, the findings could accelerate the production of environmentally friendly fuel additives, pharmaceuticals, cosmetics, and bioplastics that are now in high demand with the phasing out of single-use plastic bags and straws in many parts of the world.

Algae, compared with land plants, are very appealing due to their high photosynthetic productivity and relative ease of cultivation. Starch, triacylglycerols (TAGs) and other algal biomass constituents are increasingly viewed as a promising and powerful way to contribute to the Sustainable Development Goals (SDGs) outlined by the United Nations.

The research team notes that more studies using other algal species, as well as higher plants such as Arabidopsis thaliana, could yield further information about the fundamental molecular mechanisms behind starch accumulation. “This information will help to develop technologies to improve starch biosynthesis productivity and concomitantly improve sustainable biomass and bioenergy production,” Dr. Imamura says.

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called m...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
Jeff Gelsky writes in Meat+Poultry that Corbion executives have given insights on how its September 29 acquisition of TerraVia Holdings Inc., an algae-based ingredients c...
Ali Morris writes in dezeen.com that Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely rep...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
Environmental Technology magazine notes that the difficulty in predicting how algae blooms will develop lies in their variform nature. With a multitude of different bloom...
Alexander Richter reports for Geothermal Energy News that, among the many examples offered during a recent conference in Pisa, Italy, on Perspectives and Impact of the Gr...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
Mazda U.K. has announced that they are currently involved in joint research projects and studies as part of an ongoing industry-academia-government collaboration to promo...