Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Scientists develop high-CO2-tolerant microalgae

March 27, 2019
AlgaeIndustryMagazine.com

Mechanisms for the higher acidity tolerance in the CA2-knockdown N. oceanica. Image: WEI Li

The rapid elevation of atmospheric carbon dioxide level has led to global warming and ocean acidification. Microalgae, accounting for nearly 40% of global carbon dioxide fixation on Earth, are on the forefront of mankind’s battle against climate change, since many of them are able to directly convert sunlight and industrial carbon dioxide into transportation fuels and energy-rich nutrients.

However, the high concentration of carbon dioxide in flue gases generally inhibits the growth of industrial microalgae. Therefore, reducing the so-called “CO2 poisoning effect,” i.e., improving tolerance to high levels of CO2, has become a priority in the development of super microalgae for carbon fixation.

In a new study published in Metabolic Engineering, a team of scientists led by Prof. XU Jian from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), and Prof. Ansgar Poetsch from Ruhr University, developed a way to improve tolerance to high levels of CO2 in the industrial oil-producing microalgae Nannochloropsis.

The research team started by discovering that CA2, a key enzyme of the carbon-concentrating mechanism (CCM), is a key sensor of the level of extracellular CO2. Then instead of enhancing the function of the sensor, they reduced its activity through RNAi-based gene knockdown. Surprisingly, the mutants were able to grow 30% faster than wild-type cells at a 5% CO2 level in flue gas, over 100 times higher than the 0.04% CO2 level found in air. Moreover, this advantage was persistent under various types of photobioreactors and a wide range of cultivation scales.

In ancient times, Earth’s atmospheric CO2 level was many times higher than today. Over millions of years of evolution, the CCMs of microalgae, whose role was to concentrate CO2 molecules around the prevalent carbon-fixing machinery called RuBisCO, have had to gradually adapt to lower and lower levels of atmospheric CO2.

Therefore, by down-regulating CCM activity, the research team essentially turned back the clock of this evolutionary process and returned modern-day CCM to its ancient high-CO2-accustomed form. This “anti-evolution” endeavor by scientists improves the microalga’s tolerance to high CO2 environments, such as that found in flue gases.

This novel strategy has general implications for the development of industrial oil-producing microalgae, as well as food crops, under circumstances where high carbon levels are beneficial or even necessary.

These circumstances can arise not only in the industrial conversion of flue gas to reduce carbon emissions and mitigate global warming, but also as mankind explores space in search of its next home.

Source: Chinese Academy of Sciences

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Tavelmout Biofarm (TVMB), a Bruneian subsidiary of Tabérumo Corporation — a pioneer in the large-scale cultivation of spirulina using photobioreactors — has launched thei...
Nestlé has entered into a partnership with Corbion to develop the next generation of microalgae-based ingredients, enabling the companies to deliver sustainable, tasty an...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Globally, an increase in water pollution is pushing scientists and environmental care specialists to seek best ways of preserving and maintaining sources of safe drinking...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...
How did plants make the evolutionary jump from water to land? Scientists think that green algae are their water-living ancestors, but we are not sure how the transition t...
Environmental Technology magazine notes that the difficulty in predicting how algae blooms will develop lies in their variform nature. With a multitude of different bloom...
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...