Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Sandia purposefully crashing algae ponds

March 9, 2017
AlgaeIndustryMagazine.com

Sandia National Laboratories biochemist Carolyn Fisher examines a beaker full of microscopic algae eaters called rotifers being grown for the DISCOVR project. Photo: Dino Vournas

For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for resistance to a host of predators and diseases, and learning to detect when an algae pond is about to crash. An estimated 30 percent of current production on algae farms is lost each year due to pond crashes.

These experiments are part of the new, $6 million Development of Integrated Screening, Cultivar Optimization and Validation Research (DISCOVR) project, whose goal is to determine which algae strains are the toughest and most commercially viable.

The Department of Energy’s Office of Energy Efficiency and Renewable Energy sponsors the project, and Sandia’s partners are Los Alamos (LANL) and Pacific Northwest (PNNL) national laboratories, the National Renewable Energy Laboratory (NREL) and Arizona State University (ASU).

The national labs, and Sandia in particular with its expertise on algae predators, are well suited for this research. Sandia is using its 1,000-liter indoor algae raceway facility, also called a “crash lab,” to perform experiments that industrial groups will not do because they can’t afford to contaminate their ponds.

“We use organisms and agents that many of my industrial partners do not allow on their sites,” said biologist Todd Lane, Sandia’s project lead. “They cannot culture these creatures in their own facilities. It’s too much of a risk.”

Dr. Lane and his team are cultivating what he calls “a diverse panel of nasty things” to learn which type of parasitic fungus, bacterium or disease kills various strains of algae the quickest.

Microscope photo of a rotifer grown at Sandia National Laboratories with a belly full of algae. Image courtesy of Sandia National Laboratories

Perhaps the most threatening member of the predatory panel is a rotifer, a microscopic organism capable of eating 200 algal cells per minute. Rotifer infection can take a 132,000-gallon commercial pond from a healthy green to collapse within 48 hours. “They are basically tiny vacuums for algae,” said Dr. Lane.

This algae abuse will begin in March, using the nanochloropsis strain as a baseline for survival statistics. Ironically, nanochloropsis is an industrial algae strain typically grown for feeding rotifers on fish farms. The team will conduct these tests on 15 algae strains in the crash lab under light and temperature conditions that mimic a variety of outdoor environments.

The ability to simulate different climates further enhances the team’s validation of certain strains. However, even the strongest algae are susceptible to infections, so detecting infections before ponds crash is key.

For early crash detection, Jeri Timlin, an analytical chemist on Sandia’s DISCOVR team, is using a technique called spectro-radiometric monitoring to watch the ponds for subtle changes in reflected light that indicate the presence of pathogens or predators. Sandia researcher Tom Reichardt, also part of the DISCOVR team, developed the technique.

Most objects reflect light in different wavelengths, which results in the perception of color. This technique can detect subtle color changes associated with physical and chemical properties of the algae, making it possible to determine the pond’s density and overall health.

A major advantage of the Sandia monitoring method is that it provides real-time measurements, without lab analysis. Previously, scientists had to do the time-consuming task of taking a sample from a pond back to a lab to measure it. Spectro-radiometric monitoring takes precise pond measurements every five minutes, without physical contact with the pond itself. And, no human is needed to make the measurements.

 While Sandia monitors ponds and evaluates resistance to diseases, PNNL will quantify the biomass production rate of 10 strains of algae that they grow in a variety of simulated environmental conditions. NREL then will perform compositional analysis on the same strains, seeking those best suited for fuel production.

Later phases of the three-year project will involve partners in this “algae pipeline,” increasing pond culture stability and evaluating the potential for generating products other than fuel, such as chemicals used for industrial purposes. LANL will take the strongest strains and work to improve them further, aiming for faster growth rates and higher tolerance for a range of environmental conditions. Finally, ASU will validate the national labs’ research in outdoor test beds.

By determining the most resilient algae strains and best practices for algae farming, Sandia and its partner labs may one day enable farmers to produce enough algae to make biofuels a real competitor at the pump.

More Like This…

Copyright ©2010-2020 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
Jessica D'Lima writes in AdvancedScienceNews.com that medicine is moving towards minimally invasive procedures, which have important patient-oriented benefits such as sho...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...
In collaboration with fellow researchers, chemists at the Technical University of Munich (TUM) have developed a process that, according to initial calculations, can facil...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
Jason Huffman writes in UndercurrentNews.com that the Kampachi Company, a mariculture business focused on expanding the environmentally sound production of sashimi-grade ...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
Biotechnologists from Aarhus University have demonstrated how the rare properties of an atypical light-dependent enzyme can be used with a photo-bio-catalytic continuous ...
Mazda U.K. has announced that they are currently involved in joint research projects and studies as part of an ongoing industry-academia-government collaboration to promo...
Reebok has introduced a plant-based shoe that is in class with the best performance running sneakers on the market. The Forever Floatride GROW is the latest example of Re...
Researchers at Los Alamos National Laboratory and partner institutions have provided the first published report of algae using raw plants as a carbon energy source. The r...