twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
go to http://www.aocs.org!
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!GEA Algae Separation Technology

Research

Researching algae in space and extreme environments

June 1, 2014 — by Dennis O’Brien
AlgaeIndustryMagazine.com

Soyez rocket launching from the Baikonur Cosmodrome in Kazakhstan

Soyez rocket launching from the Baikonur Cosmodrome in Kazakhstan

By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and photosynthesis.

The work by plant physiologist Autar Mattoo with USDA’s Agricultural Research Service (ARS) is part of an international effort, largely funded by the European Space Agency, to improve the photosynthetic machinery of crops so they produce higher yields and grow in extreme environments. Mattoo works at the ARS Sustainable Agricultural Systems Laboratory in Beltsville, Maryland.

Autar Mattoo

Plant physiologist Autar Mattoo analyzes the algae data during the space flight. The screen on the right shows the crystal structure of the D1 protein with muta-tion sites. Photo by Stephen Ausmus.

ARS is USDA’s principal intramural scientific research agency, and this research supports the USDA priority of promoting international food security.

During photosynthesis, a protein-pigment complex known as Photosystem II (PS II) must constantly be repaired to fix damage caused by sunlight and ultraviolet radiation. As part of that repair process, a protein known as D1 is continuously being replaced. Research has shown that mutations of the D1 protein in the PS II complex can either increase or decrease photosynthetic activity.

Giuseppina Rea

At the Institute of Crystallography in Rome, Italy, Giuseppina Rea selects algae cultures for the space flight. Photo by Maria Teresa Giardi.

The researchers wanted to assess the effects of microgravity, cosmic rays, high-energy particles and the ionizing radiation of space on the PS II complex, photosynthesis and plant growth. They also wanted to see if the effects would differ in a simple model for photosynthesis, an alga, with the D1 gene altered in specific ways.

The researchers placed samples of the alga Chlamydomonas reinhardtii in airtight “photo cells” and had them launched in a Russian-made Soyuz space capsule in Kazakhstan. The C. reinhardtii, often studied as a model for photosynthesis, spent 15 days in orbit getting doses of cosmic radiation while under light and temperature conditions that would ensure growth on earth. They also sent up four mutants of C. reinhardtii with alterations in the D1 protein gene.

Baikonur Cosmodrome

Baikonur Cosmodrome in Kazakhstan, the Soyuz rocket is being prepared for launch. The Foton-M2 capsule containing the mutant algae samples is held in the green nose of the rocket. Photo courtesy of European Space Agency.

They found that some aspect of the space environment inhibited the ability of the control C. reinhardtii and two of the four mutant strains to photosynthesize and grow, both in space and later when they were brought back to Earth. However, two other mutant strains flourished, both in space and when they returned to Earth. The results, published in PLOS ONE, shed new light on the importance of the D1 protein both in photosynthesis and as a target of environmental signals.

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Glass tubing manufacturer SCHOTT, and Algatechnologies Ltd. (Algatech), a commercial algae producer and one of the largest manufacturers of natural astaxanthin, have part...
Tel Aviv, Israel-based UniVerve Ltd. has begun scaling-up its technological process for algae cultivation. The oil, which can be extracted with off-the-shelf wet extracti...
The Chesapeake Bay Seed Capital Fund, located in College Park, Maryland, has invested $150,000 into Manta Biofuel LLC, a company that produces crude oil from algae at a c...
The Technical University of Munich (TUM) has built a one-of-a-kind technical facility for algae cultivation at the Ludwig Bölkow Campus in Ottobrunn, to the south of Muni...
Ewen Callaway writes in the jounal Nature that restrictions on harvests and exports of Gelidium seaweed in Morocco have affected the global supply of the lab reagent agar...
Algatechnologies Ltd. has launched its AstaPure® 5% Natural Astaxanthin oleoresin, derived from Haematococcus pluvialis microalgae. This latest addition to the AstaPure f...
Students of algal research, including it's various applications and business models, have increasing opportunities to get quickly up to speed in many aspects of the rapid...
I’m an aquanaut teen. I was born in immersion in 2050 in an underwater farm called “Aequorea” off the coast of Rio de Janeiro. Bio-inspired, the farm draws its name from ...
Nevele, Belgium-based TomAlgae is developing freeze-dried microalgae for feed in shrimp hatcheries. The company has created its own microalgal “cultivar” and manufactures...
Flint Michigan’s water supply was switched from Lake Huron to the Flint River in 2014. The Flint is so notoriously dirty that some locals call it the Filth River. The cha...
The new algae raceway testing facility, opening February 4 at Sandia National Laboratories in Livermore, California, paves a direct path between laboratory research and s...
Abigail Klein Leichman writes in ISRAEL21c that, in the rush to research algae-based technologies, Israel – as a startup nation itself – is at the forefront of much of th...