go to http://www.aocs.org! Click here for more information about LiqofluxColorado Lining Visit  cricatalyst.com!Looking for Algae Industry Research?

Research

Researching algae in space and extreme environments

June 1, 2014 — by Dennis O’Brien
AlgaeIndustryMagazine.com

Soyez rocket launching from the Baikonur Cosmodrome in Kazakhstan

Soyez rocket launching from the Baikonur Cosmodrome in Kazakhstan

By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and photosynthesis.

The work by plant physiologist Autar Mattoo with USDA’s Agricultural Research Service (ARS) is part of an international effort, largely funded by the European Space Agency, to improve the photosynthetic machinery of crops so they produce higher yields and grow in extreme environments. Mattoo works at the ARS Sustainable Agricultural Systems Laboratory in Beltsville, Maryland.

Autar Mattoo

Plant physiologist Autar Mattoo analyzes the algae data during the space flight. The screen on the right shows the crystal structure of the D1 protein with muta-tion sites. Photo by Stephen Ausmus.

ARS is USDA’s principal intramural scientific research agency, and this research supports the USDA priority of promoting international food security.

During photosynthesis, a protein-pigment complex known as Photosystem II (PS II) must constantly be repaired to fix damage caused by sunlight and ultraviolet radiation. As part of that repair process, a protein known as D1 is continuously being replaced. Research has shown that mutations of the D1 protein in the PS II complex can either increase or decrease photosynthetic activity.

Giuseppina Rea

At the Institute of Crystallography in Rome, Italy, Giuseppina Rea selects algae cultures for the space flight. Photo by Maria Teresa Giardi.

The researchers wanted to assess the effects of microgravity, cosmic rays, high-energy particles and the ionizing radiation of space on the PS II complex, photosynthesis and plant growth. They also wanted to see if the effects would differ in a simple model for photosynthesis, an alga, with the D1 gene altered in specific ways.

The researchers placed samples of the alga Chlamydomonas reinhardtii in airtight “photo cells” and had them launched in a Russian-made Soyuz space capsule in Kazakhstan. The C. reinhardtii, often studied as a model for photosynthesis, spent 15 days in orbit getting doses of cosmic radiation while under light and temperature conditions that would ensure growth on earth. They also sent up four mutants of C. reinhardtii with alterations in the D1 protein gene.

Baikonur Cosmodrome

Baikonur Cosmodrome in Kazakhstan, the Soyuz rocket is being prepared for launch. The Foton-M2 capsule containing the mutant algae samples is held in the green nose of the rocket. Photo courtesy of European Space Agency.

They found that some aspect of the space environment inhibited the ability of the control C. reinhardtii and two of the four mutant strains to photosynthesize and grow, both in space and later when they were brought back to Earth. However, two other mutant strains flourished, both in space and when they returned to Earth. The results, published in PLOS ONE, shed new light on the importance of the D1 protein both in photosynthesis and as a target of environmental signals.

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
Scientists from the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization in La Jolla, California, have published a paper outlining new synthet...
Algae “red tide” events often create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteri...
Japan’s IHI Corporation has announced that they have succeeded in stably cultivating a modified high-output algal strain in a 1,500 square meter open pond in Kagoshima, K...
Joule has announced the issuance of a patent on the direct, continuous production of hydrocarbon fuels — extending its ability to target the highest-value molecules of th...
Using microalgae to capture CO2 is a complex process, especially in flue gas environments, reports an editorial by IEA Clean Coal Centre in worldcoal.com. There are many ...
Tom Redmond and Yuko Takeo report for Bloomberg.com that, after 10 years of developing algae as a nutritional supplement generating $37.8 million in annual revenue, Japan...
Nurit Canetti writes in Israeli Pulse that Rwandan agronomists are on a one-year visit to Israel to study various aspects of Israeli agriculture firsthand. Primarily they...
Jessie Rack reports for NPR that demand for plant protein of all types is growing in concert with the growing interest in the U.S. to reduce meat consumption. People, fro...
The demand for spirulina as a natural food colorant is robust in the North America food processing industry, according to a new study by market intelligence firm Future M...
Currently made most often from petroleum and natural gas, ethylene is used in the manufacture of plastics and polyester, and ranks as the largest petrochemical produced b...
Mark Harris writes in the Guardian about a pilot project in Las Cruces, New Mexico, where Dr. Peter Lammers, a professor in algal bioenergy at Arizona State University, a...
MicroBio Engineering, Inc. has announced a new line of 100 and 1,000 liter Algae Raceways™, building on the success of their popular 0.5 m2 (5.5 ft2) and 3.5 m2 (40 ft2),...