Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Producing algae-based biofertilizer from runoff water

January 8, 2018 — by Rachel Zussman, BioTechnology Institute at the University of Minnesota
AlgaeIndustryMagazine.com

Dr. Gardner’s team is currently working to optimize the microalgae for specific crops and environmental conditions.

Minnesota is an agricultural powerhouse that ranks 5th in the nation for total agricultural production. However, this agricultural prosperity may inadvertently threaten the future of the state’s 10,000+ lakes. Agricultural runoff, often high in inorganic nitrogen and phosphorous, can fuel the rapid growth of algae that deplete lakes and streams of oxygen. This process known as eutrophication threatens the structure and function of entire aquatic ecosystems and has been linked to dead zones as far downstream as the Gulf of Mexico.

Robert Gardner, a professor of bioproducts and biosystems engineering at the University of Minnesota West Central Research and Outreach Center, hopes to capture and recycle the nutrients in runoff water and produce an environmentally friendly microalgae-based biofertilizer. Dr. Gardner’s research, funded in part by a MnDRIVE Environment seed grant, could reduce demand for synthetic fertilizer while boosting farm productivity and sustainability.

Nitrogen and phosphorus, Dr. Gardner points out, are not inherently bad. Plants require both to grow and thrive, but synthetic fertilizers tend to oversaturate crops with nutrients, so the excess seeps into the runoff and eventually into lakes and streams.

The microalgae-based fertilizer proposed by Dr. Gardner eliminates this issue by releasing organic nutrients at a much slower rate. “We are capturing, converting, and recycling the inorganic nitrogen and phosphorous found in runoff water into an organic form,” he says. “Instead of seeping into the runoff, nutrients remain in the field and are released slowly as the algae decompose.”

To simulate a natural rain event and the resulting runoff, Dr. Gardner’s team utilizes a three-story water drop tower housed within the USDA-ARS North Central Soil Conservation Research Lab. The water is collected and analyzed for its nitrogen and phosphorous content. The team then cultivates the microalgae using nitrogen and phosphorous found in the runoff and carbon dioxide supplied by the project’s industry partner, Chippewa Valley Ethanol Company. Once harvested, the algae can be applied to crops as a biofertilizer.

Dr. Gardner is currently working to optimize the microalgae for specific crops and environmental conditions. “Similar to crop rotation, we must grow different microalgae strains at different times of the year,” he says.

Different strains may be applied in early spring or midsummer in response to changes in temperature and rain patterns. To make matters more complex, many plants use nitrogen at a faster rate than phosphorous. Even if nitrogen is eliminated from the runoff water, there may still be residual phosphorous. To address this issue, Dr. Gardner is currently exploring the rate at which differing algal strains take up the nutrients to optimize the system for different crops and field conditions.

In the lab, Dr. Gardner’s team is at work characterizing and optimizing algal strains and running simulations to establish best practices for deploying biofertilizers. Though still in the demonstration phase, the research shows promise for future broad-scale application. “Fertilizer is a precious commodity. If we are able to make it more sustainable while also increasing its capability,” he says, “it will help feed our future and save our lakes.”

Located in Benson, Minnesota, the Chippewa Valley Ethanol Company (CVEC) is the industrial partner for Gardner’s MnDRIVE project. By participating in the project, the company can recycle excess carbon that would typically go straight into the atmosphere. CVEC will also provide knowledge and structural support necessary to take the project to production scale. “These grand challenges take a team, and the Chippewa Valley Ethanol Company is an essential part of our team,” says Dr. Gardner.

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
A Bay Area company has patented a group of three single-celled, algae-like organisms that, when grown together, can produce high quantities of sugar just right for making...
Sex self-destruction represents a fascinating new scientific mystery that includes climate chaos, ghost forests, temperature spikes, fierce storms, colossal nutrient coll...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
Jeff Gelsky writes in Meat+Poultry that Corbion executives have given insights on how its September 29 acquisition of TerraVia Holdings Inc., an algae-based ingredients c...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...