Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Predicting climate change via mesocosms

June 11, 2017
AlgaeIndustryMagazine.com

Mesocosm: The small-scale ecosystems containing sand, rocks and artificial seagrass on which algae could grow were designed to simulate the impact of climate change. Credit: University of Adelaide via NYT

Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called mesocosms, designed to simulate the effects of climate change.

The experiments are already revealing dangers that would have been missed had researchers tried to study individual species in isolation. “If you just take one fish and put it in a tank and see how it responds to temperature, you can imagine that’s a huge simplification of reality,” said Ivan Nagelkerken, an ecologist at the University of Adelaide who is leading the research effort.

They filled 12 pools with 475 gallons of seawater apiece and built simple ocean ecosystems in each one. They put sand and rocks on the bottom of the pools, along with artificial sea grass on which algae could grow. They stocked their small-scale mesocosms with local species of crustaceans and other invertebrates, which grazed on the algae. For predators, they added a small fish known as the Southern longfin goby, which feeds on invertebrates.

To test the effects of climate change, Dr. Nagelkerken and his colleagues manipulated the water in the pools. In three of them, the researchers raised the temperature by five degrees – a conservative projection of how warm water off the coast of South Australia will get. The scientists also studied the effect of the carbon dioxide that is raising the planet’s temperature. The gas is dissolving into the oceans, making them more acidic and potentially causing harm to marine animals and plants.

Yet the extra carbon dioxide can be used by algae to carry out more photosynthesis. To measure the overall effect, Ivan and his colleagues pumped the gas into three of the pools, keeping them at today’s ocean temperatures. In three others, the researchers made both changes, heating up the water and pumping in carbon dioxide. The scientists left the remaining three pools unaltered, to serve as a baseline for measuring changes in the other nine pools.

On its own, Ivan and his colleagues found, carbon dioxide benefited all three layers of the food web. Algae grew faster, providing more food to the invertebrates. The invertebrates, in turn, provided more food to the gobies. But the combination of extra carbon dioxide with warmer water wiped out that benefit. Even with extra algae to eat, the invertebrates failed to grow faster, perhaps because the algae provide less nutrition when they grow at higher temperatures. It is also possible that the invertebrates are under too much stress in warmer water to grow more.

Read More

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
Cyanotech Corporation a leader in microalgae-based, high-value nutrition and health products, announced financial results for the third quarter and first nine months of f...
The recently signed US two-year budget deal – featuring bipartisan support for a $35 per ton tax incentive for carbon captured and recycled from power plants or industria...
Globally, an increase in water pollution is pushing scientists and environmental care specialists to seek best ways of preserving and maintaining sources of safe drinking...
The Natural Algae Astaxanthin Association (NAXA), headquartered in Spring, Texas, has announced that Chile-based Atacama Bio is its newest executive member. Atacama Bio h...
Global EcoPower (GEP), of Aix-en-Provence, France, has signed a 5-year partnership contract with the French Alternative Energies and Atomic Energy Commission (CEA). This ...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...