Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Predicting climate change via mesocosms

June 11, 2017
AlgaeIndustryMagazine.com

Mesocosm: The small-scale ecosystems containing sand, rocks and artificial seagrass on which algae could grow were designed to simulate the impact of climate change. Credit: University of Adelaide via NYT

Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called mesocosms, designed to simulate the effects of climate change.

The experiments are already revealing dangers that would have been missed had researchers tried to study individual species in isolation. “If you just take one fish and put it in a tank and see how it responds to temperature, you can imagine that’s a huge simplification of reality,” said Ivan Nagelkerken, an ecologist at the University of Adelaide who is leading the research effort.

They filled 12 pools with 475 gallons of seawater apiece and built simple ocean ecosystems in each one. They put sand and rocks on the bottom of the pools, along with artificial sea grass on which algae could grow. They stocked their small-scale mesocosms with local species of crustaceans and other invertebrates, which grazed on the algae. For predators, they added a small fish known as the Southern longfin goby, which feeds on invertebrates.

To test the effects of climate change, Dr. Nagelkerken and his colleagues manipulated the water in the pools. In three of them, the researchers raised the temperature by five degrees – a conservative projection of how warm water off the coast of South Australia will get. The scientists also studied the effect of the carbon dioxide that is raising the planet’s temperature. The gas is dissolving into the oceans, making them more acidic and potentially causing harm to marine animals and plants.

Yet the extra carbon dioxide can be used by algae to carry out more photosynthesis. To measure the overall effect, Ivan and his colleagues pumped the gas into three of the pools, keeping them at today’s ocean temperatures. In three others, the researchers made both changes, heating up the water and pumping in carbon dioxide. The scientists left the remaining three pools unaltered, to serve as a baseline for measuring changes in the other nine pools.

On its own, Ivan and his colleagues found, carbon dioxide benefited all three layers of the food web. Algae grew faster, providing more food to the invertebrates. The invertebrates, in turn, provided more food to the gobies. But the combination of extra carbon dioxide with warmer water wiped out that benefit. Even with extra algae to eat, the invertebrates failed to grow faster, perhaps because the algae provide less nutrition when they grow at higher temperatures. It is also possible that the invertebrates are under too much stress in warmer water to grow more.

Read More

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
Globally, an increase in water pollution is pushing scientists and environmental care specialists to seek best ways of preserving and maintaining sources of safe drinking...
JapanNews.com reports that Euglena Co., a Tokyo-based maker of nutritional supplements, is spending ¥5.8 billion ($5.3 million USD) on building a test refinery that conve...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
Algae and corals have been leaning on each other since dinosaurs roamed the earth, much longer than had been previously thought, according to new research led by scientis...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...
Alexander Richter reports for Geothermal Energy News that, among the many examples offered during a recent conference in Pisa, Italy, on Perspectives and Impact of the Gr...
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
Steve Fountain writes in fortstocktonpioneer.com that, amid the 800-page law that last month set the country’s farm policy through 2023, is the expansion of federal suppo...
Paris-based Solabia Group (“Solabia”) has acquired Algatech Ltd., a global leader in the development, cultivation and commercialization of ingredients delivered from micr...