[ad#PhycoBiosciences AIM Interview]

Innovations

Chlamydomonas, seen here at UC San Diego, may have a role in treating malaria, and can be grown in ponds anywhere in the world.

Chlamydomonas, seen here at UC San Diego, may have a role in treating malaria, and can be grown in ponds anywhere in the world. Photo: SD-CAB

Potential Malarial Vaccine from Algae

May 17, 2012, by Kim McDonald
AlgaeIndustryMagazine.com

Biologists at the University of California, San Diego have succeeded in engineering algae to produce potential candidates for a vaccine that would prevent transmission of the parasite that causes malaria, an achievement that could pave the way for the development of an inexpensive way to protect billions of people from one of the world’s most prevalent and debilitating diseases.

The use of algae to produce malaria proteins that elicited antibodies against Plasmodium falciparum in laboratory mice and prevented malaria transmission was published May 16 in the online, open-access journal PLoS ONE. The development resulted from an unusual interdisciplinary collaboration between two groups of biologists at UC San Diego – one from the Division of Biological Sciences and San Diego Center for Algae Biotechnology, which had been engineering algae to produce bio-products and biofuels, and another from the Center for Tropical Medicine and Emerging Infectious Diseases in the School of Medicine that is working to develop ways to diagnose, prevent and treat malaria.

“Malaria is caused by a parasite that makes complex proteins, but for whatever reason this parasite doesn’t put sugars on those proteins,” said Stephen Mayfield, a professor of biology at UC San Diego who headed the research effort. “If you have a protein covered with sugars and you inject it into somebody as a vaccine, the tendency is to make antibodies against the sugars, not the amino acid backbone of the protein from the invading organism you want to inhibit. Researchers have made vaccines without these sugars in bacteria and then tried to refold them into the correct three-dimensional configuration, but that’s an expensive proposition and it doesn’t work very well.”

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria. Photo: Wikimedia

Instead, the biologists looked to produce their proteins with the help of an edible green alga, Chlamydomonas reinhardtii, used widely in research laboratories as a genetic model organism, much like the fruit fly Drosophila and the bacterium E. coli. Two years ago, a UC San Diego team of biologists headed by Mayfield, who is also the director of the San Diego Center for Algae Biotechnology, a research consortium seeking to develop transportation fuels from algae, published a landmark study demonstrating that many complex human therapeutic proteins, such as monoclonal antibodies and growth hormones, could be produced by Chlamydomonas.

That got James Gregory, a postdoctoral researcher in Mayfield’s laboratory, wondering if a complex protein to protect against the malarial parasite could also be produced by Chlamydomonas. Two billion people live in regions where malaria is present, making the delivery of a malarial vaccine a costly and logistically difficult proposition, especially when that vaccine is expensive to produce. So the UC San Diego biologists set out to determine if this alga, an organism that can produce complex proteins very cheaply, could produce malaria proteins that would inhibit infections from malaria.

Collaborating with Joseph Vinetz, a professor of medicine at UC San Diego and a leading expert in tropical diseases who has been working on developing vaccines against malaria, the researchers showed that the proteins produced by the algae, when injected into laboratory mice, made antibodies that blocked malaria transmission from mosquitoes.

The scientists, who filed a patent application on their discovery, said the next steps are to see if these algae proteins work to protect humans from malaria and then to determine if they can modify the proteins to elicit the same antibody response when the algae are eaten rather than injected.

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Kevin Quon writes in Seeking Alpha about the financial plights and pivots of Solazyme, the algae industry’s most high profile recent IPO. In a year that started with a sh...
In an age where customer input is as easy as a click, OriginOil has tapped directly into its intended market to R&D their next generation algae harvester -- with a de...
Developing renewable fuel from wet algae is one of the latest innovations Richland, Washington-based Pacific Northwest National Laboratory (PNNL) has successfully driven ...
Solazyme has announced that total revenue for the fourth quarter of 2014 was $14.5 million, compared with $11.3 million in the fourth quarter of 2013, an increase of 29%....
As of March 1, 2015, bbi-biotech GmbH, of Berlin, Germany, has begun integrating IGV Biotech GmbH’s photobioreactors into its own life science product portfolio. A former...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
Sebastian Rich reports on PBS Newshour about the Central African Republic city of Bangui, which has been caught in the crossfire between warring Muslim and Christian grou...
Jeff Gelski writes in foodbusinessnews.net that algae oil is now in the toolbox of alternative oils shown to replace partially hydrogenated oils (PHOs), which cause trans...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
The vision of developing a community college degree program to train a high technology algae workforce was launched at New Mexico's Santa Fe Community College (SFCC) in 2...
The Biotechnology Industry Organization (BIO) has named Solazyme CEO and co-founder Jonathan S. Wolfson as the recipient of its 2015 George Washington Carver Award for in...
Joule has announced the issuance of a patent on the direct, continuous production of hydrocarbon fuels — extending its ability to target the highest-value molecules of th...
Natacha Tatu writes in Worldcrunch about a 72-year old French chef who has taken on the challenge of bringing spirulina to the malnourished youth of the Central Africa. F...