twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Innovations

PNNL seeking the perfect algae for renewable energy

January 15, 2017
AlgaeIndustryMagazine.com

PNNL’s Laboratory Environmental Algae Pond Simulator

PNNL’s Laboratory Environmental Algae Pond Simulator system, also known as LEAPS, mimics the frequently shifting water temperatures and lighting conditions that occur in outdoor ponds at any given place on earth. This allows researchers to test multiple algae strains with the conditions at different places, but without the cost and time needed to actually grow them at those locations.

Discovering which algae species is best suited to make biofuel is no small task. Researchers have tried to evaluate algae in test tubes, but often find lab results don’t always mirror what happens when grown in outdoor ponds.

A new, approximately $6-million collaborative project is using a unique climate-simulating laboratory system as part of a new streamlined process to quickly pare down heaps of algae species into just a few that hold the most promise for renewable fuels.

The Algae DISCOVR Project — short for Development of Integrated Screening, Cultivar Optimization and Validation Research — is trying out a new approach that could reduce the cost and the time needed to move promising algal strains from the laboratory into production. At the end of the three-year pilot project, scientists hope to identify four promising strains from at least 30 initial candidates.

The project started this past fall and is led by Pacific Northwest National Laboratory (PNNL), out of its Marine Sciences Laboratory in Sequim, Washington. The project team includes three other DOE labs — Los Alamos National Laboratory, National Renewable Energy Laboratory and Sandia National Laboratories — as well as Arizona State University’s Arizona Center for Algae Technology and Innovation.

“Algae biofuel is a promising clean energy technology, but the current production methods are costly and limit its use,” said the project’s lead researcher, Michael Huesemann of the Department of Energy’s PNNL. “The price of biofuel is largely tied to growth rates. Our method could help developers find the most productive algae strains more quickly and efficiently.”

PNNL researcher Michael Huesemann (front, left) is leading a multi-laboratory project that is developing a new streamlined process to quickly pare down heaps of algae species into just a few that hold the most promise for making biofuel.

The project’s early work relies on PNNL’s Laboratory Environmental Algae Pond Simulator mini-photobioreactors, also known as LEAPS. The system mimics the frequently shifting water temperatures and lighting conditions that occur in outdoor ponds at any given place on earth. The system consists of glass column photobioreactors that act like small ponds and are placed in rows to allow scientists to simultaneously grow multiple different types of algae strains. Each row of LEAPS mini-photobioreactors is exposed to unique temperature and lighting regimens thanks to heaters, chillers and heat exchangers, as well as colored lights simulating the sunlight spectrum — all of which can be changed every second.

The first phase of the team’s multi-step screening process uses PNNL’s photobioreactors to cultivate all 30 strains under consideration and evaluate their growth rates. Algae strains with suitable growth will be studied further to measure their oil, protein and carbohydrate content, all of which could be used to make biofuels. The algae will also be tested for valuable co-products such as the food dye phycocyanin, which could make algae biofuel production more cost-effective. The first phase will also involve evaluating how resistant strains are to harmful bacteria and predators that can kill algae.

Next, the team will look for strains that produce 20 percent more biomass, or organic matter used to make biofuel, than two well-studied algae strains. The top-performing strains will then be sorted to find individual cells best suited for biofuel production, such as those that contain more oil. Those strains will also be exposed to various stresses to encourage rapid evolution so they can, for example, survive in the higher temperatures outdoor ponds experience in the summer.

After passing those tests, the remaining strains will be grown in large outdoor ponds in Arizona. Researchers will examine how algae growth in the outdoor ponds compares with the algal biomass output predicted in earlier steps. Biomass will also be harvested from outdoor-grown algae for future studies.

Finally, the team will further study the final algae strains that fare best outdoors to understand how fast they grow in different lighting and temperature conditions. That data will then be entered into PNNL’s Biomass Assessment Tool, which uses detailed data from weather stations and other sources to identify the best possible locations to grow algae. The tool will crunch numbers to help the team generate maps that illustrate the expected biomass productivity of each algae species grown in outdoor ponds at any location in the U.S.

Data and strains will be made public in the hopes that algae companies and other researchers will consider growing the most productive strains identified by the project.

This project is supported by DOE’s Office of Energy Efficiency and Renewable Energy.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
The GNT Group, a market leader in using algae as natural ingredients for color, has begun construction of an additional spirulina plant at its headquarters in Mierlo, the...
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
In Australia, the New South Wales Deep Green Biotech Hub (DGBH) has been launched as an enabling incubator environment to foster the development of algae as a cost effect...
Tafline Laylin writes for Inhabitat.com about the elegant solution that Romanian designer Alexandru Predonu has conceived that uses solar energy to power a rotating desal...
Algae.Tec has announced that, with the completion of the US$1M injection by Gencore, their nutraceutical plant upgrade in Cummings, Georgia, is progressing ahead of sched...
Dr. Tom Dempster works as a research professor – focusing on strain selection and development, biomass production, algal biofuels and high-value products, and air and was...
If you’re a fan of the television show “Shark Tank”, you won't want to miss the episode that airs this Friday, November 18th 9:00-10:00 p.m. EST on ABC Television, when C...
Nicolas Sainte-Foie writes for Labiotech.eu about French startup Algopack manufacturing bio-based plastics made from brown algae. Founded by Rémy Lucas in 2010 and manage...
Joy Lanzendorfer reports for NPR that, as seaweed continues to gain popularity for its nutritional benefits and culinary versatility, more people are taking up seaweed fo...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for r...