twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
NCMA Algae Tips
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Commercial Algae Professionals

Technology

PMF technology promotes algal growth

April 1, 2016 — by Dr. V Sivasubramanian, PERC, India
AlgaeIndustryMagazine.com

Magnetobiology deals with the interaction of biological systems with weak static and/or low-frequency ultra-low intensity electro-magnetic fields. The nature of biological effects of weak electromagnetic fields remains unclear as yet, despite numerous experimental data.

Explanation of the physical nature of biological effects of weak magnetic fields is a fundamental scientific problem. The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. PERC in collaboration with Madras Institute of Magnetobiology (MIM), India has been studying this phenomenon for the last six years and developed an optimized technology for various algal processes.

A Pulsed Magnetic Field (PMF) enclosure has been installed in a 35 KL micro algal raceway facility at Bharathidasan University, India as part of Indo-UK joint research project on algal bio-fuels (DBT-INDIA BBSRC, UK supported project; Reference BT/IN/Indo-UK/SuBB/23/NT/2013).

The research team includes Dr. N. Thajuddin and Dr. G. Muralitharan of Bharathidasan University, India; Dr. V. Sivasubramanian, Director-Tech, Phycospectrum Environmental Research Centre (PERC), India: Dr. Carole Llewellyn, Swansea University; Dr. Daniel White and Dr. Karen Tait of Plymouth Marine Laboratory, United Kingdom.

This PMF enclosure is expected to enhance algal biomass productivity and increase oil content through an optimization protocol that is currently in progress. The idea of installing the world’s first ever PMF unit to a raceway pond is based on PERC’s (Phycospectrum Environmental Research Centre) collaborative project with a technical support from Madras Institute of Magnetobiology, India, which was supported by MNRE (Ministry of New and Renewable Energy), Ministry of Science and Technology, Government of India during 2011.

The summary of the findings of this project is posted at MNRE website. MNRE’s support was given to PERC based on a research article published in Journal of Algal Biomass utilization (Sivasubramanian,V, V V Subramanian, Leela Priya,T, and R Murali. 2010. Application of Pulsed Magnetic Field in improving the quality of algal biomass. J. Algal Biomass Utln. 1 (4) : 1 – 9).

35 KL raceway pond facility at BDU, India, with PMF system installed

35 KL raceway pond facility at BDU, India, with PMF system installed

The findings of this project includes optimization of Sinusoidal Magnetic Field technology to enhance the qualitative and quantitative efficacy of algal biomass production and resulted in developing a magnetic field based technology to enhance biomass production and increase oil production in the microalgae tested.

Fig 1. Growth and biomass productivity of Chlorella vulgaris exposed to PMF

Fig 1. Growth and biomass productivity of Chlorella vulgaris exposed to PMF

Fig 2. Effect of PMF (10 HZ) on FAME % of Chlorella

Fig 2. Effect of PMF (10 HZ) on FAME % of Chlorella

Another important spin off of this research project was the application of PMF technology to enhance omega-3 production in micro algae.

Fig 3. Effect of PMF (10 HZ) on omega 3 fatty acid composition (%) of Chlorella vulgaris

Fig 3. Effect of PMF (10 HZ) on omega 3 fatty acid composition (%) of Chlorella vulgaris

Trials carried out by PERC with effluent from a textile industry revealed that application of PMF technology enhances remediation efficiency of micro algae based Phycoremediation process. Based on these trials a field scale PMF enclosure is being developed to be installed at effluent treatment facility at Pasupati Acrylon, India. This is expected to improve the efficiency of micro algae based system already in operation. (Pasupati Acrylon featured in an earlier issue of AIM).

Enhanced efficiency of Phycoremediation of textile industry effluent when exposed to pulsed magnetic field (PMF)

Enhanced efficiency of Phycoremediation of textile industry effluent when exposed to pulsed magnetic field (PMF)

In conclusion, PMF technology, when properly optimized, can be applied to multi-various algae based processes like oil production, nutraceuticals production and industrial effluent treatment etc. PERC has installed the first large scale pulsed magnetic field enclosure in a 35 KL algae raceway pond. Similar PMF units are going to be installed in large scale algae-based effluent treatment plants developed by PERC.

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2016 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
As of March 1, 2015, bbi-biotech GmbH, of Berlin, Germany, has begun integrating IGV Biotech GmbH’s photobioreactors into its own life science product portfolio. A former...
Hammenhög, Sweden-based agribusiness Simris Alg has announced the launch of its first consumer products. The algae farmers’ exclusive omega-3 supplements and superfoods w...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Rich McEachran writes in the Guardian that, in the process of surfacing a road, layers of asphalt – which is composed mostly of bitumen (a byproduct of crude oil distilla...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
Nitrogen and phosphate nutrients are among the biggest costs in cultivating algae for biofuels. Sandia National Laboratories molecular biologists Todd Lane and Ryan Davis...
Modesto, California-based G3 Enterprises, Inc. has entered into an agreement with Commercial Algae Professionals (CAP) to represent their unique drying technology in the ...
Jason Holland writes in SeafoodSounce.com that the ability of marine and freshwater algae to produce omega-3 oils makes them increasingly suitable for replacing price vol...
An enzyme responsible for making hydrocarbons has been discovered by Texas A&M AgriLife Research scientists studying the common green microalga Botryococcus braunii. ...
Algaculture, or algae farming, like any form of agriculture, is highly sensitive to fertilizer costs. A major roadblock to commercial algae farming is efficient utilizati...
The Consortium for Algal Biofuel Commercialization (CAB-Comm), led by the University of California, San Diego, has just released its final report, detailing the many acco...