twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Technology

PMF technology promotes algal growth

April 1, 2016 — by Dr. V Sivasubramanian, PERC, India
AlgaeIndustryMagazine.com

Magnetobiology deals with the interaction of biological systems with weak static and/or low-frequency ultra-low intensity electro-magnetic fields. The nature of biological effects of weak electromagnetic fields remains unclear as yet, despite numerous experimental data.

Explanation of the physical nature of biological effects of weak magnetic fields is a fundamental scientific problem. The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. PERC in collaboration with Madras Institute of Magnetobiology (MIM), India has been studying this phenomenon for the last six years and developed an optimized technology for various algal processes.

A Pulsed Magnetic Field (PMF) enclosure has been installed in a 35 KL micro algal raceway facility at Bharathidasan University, India as part of Indo-UK joint research project on algal bio-fuels (DBT-INDIA BBSRC, UK supported project; Reference BT/IN/Indo-UK/SuBB/23/NT/2013).

The research team includes Dr. N. Thajuddin and Dr. G. Muralitharan of Bharathidasan University, India; Dr. V. Sivasubramanian, Director-Tech, Phycospectrum Environmental Research Centre (PERC), India: Dr. Carole Llewellyn, Swansea University; Dr. Daniel White and Dr. Karen Tait of Plymouth Marine Laboratory, United Kingdom.

This PMF enclosure is expected to enhance algal biomass productivity and increase oil content through an optimization protocol that is currently in progress. The idea of installing the world’s first ever PMF unit to a raceway pond is based on PERC’s (Phycospectrum Environmental Research Centre) collaborative project with a technical support from Madras Institute of Magnetobiology, India, which was supported by MNRE (Ministry of New and Renewable Energy), Ministry of Science and Technology, Government of India during 2011.

The summary of the findings of this project is posted at MNRE website. MNRE’s support was given to PERC based on a research article published in Journal of Algal Biomass utilization (Sivasubramanian,V, V V Subramanian, Leela Priya,T, and R Murali. 2010. Application of Pulsed Magnetic Field in improving the quality of algal biomass. J. Algal Biomass Utln. 1 (4) : 1 – 9).

35 KL raceway pond facility at BDU, India, with PMF system installed

35 KL raceway pond facility at BDU, India, with PMF system installed

The findings of this project includes optimization of Sinusoidal Magnetic Field technology to enhance the qualitative and quantitative efficacy of algal biomass production and resulted in developing a magnetic field based technology to enhance biomass production and increase oil production in the microalgae tested.

Fig 1. Growth and biomass productivity of Chlorella vulgaris exposed to PMF

Fig 1. Growth and biomass productivity of Chlorella vulgaris exposed to PMF

Fig 2. Effect of PMF (10 HZ) on FAME % of Chlorella

Fig 2. Effect of PMF (10 HZ) on FAME % of Chlorella

Another important spin off of this research project was the application of PMF technology to enhance omega-3 production in micro algae.

Fig 3. Effect of PMF (10 HZ) on omega 3 fatty acid composition (%) of Chlorella vulgaris

Fig 3. Effect of PMF (10 HZ) on omega 3 fatty acid composition (%) of Chlorella vulgaris

Trials carried out by PERC with effluent from a textile industry revealed that application of PMF technology enhances remediation efficiency of micro algae based Phycoremediation process. Based on these trials a field scale PMF enclosure is being developed to be installed at effluent treatment facility at Pasupati Acrylon, India. This is expected to improve the efficiency of micro algae based system already in operation. (Pasupati Acrylon featured in an earlier issue of AIM).

Enhanced efficiency of Phycoremediation of textile industry effluent when exposed to pulsed magnetic field (PMF)

Enhanced efficiency of Phycoremediation of textile industry effluent when exposed to pulsed magnetic field (PMF)

In conclusion, PMF technology, when properly optimized, can be applied to multi-various algae based processes like oil production, nutraceuticals production and industrial effluent treatment etc. PERC has installed the first large scale pulsed magnetic field enclosure in a 35 KL algae raceway pond. Similar PMF units are going to be installed in large scale algae-based effluent treatment plants developed by PERC.

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...
The GNT Group, a market leader in using algae as natural ingredients for color, has begun construction of an additional spirulina plant at its headquarters in Mierlo, the...
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
In New Zealand is an internationally significant collection of microalgae cultures known as the Cawthron Institute Culture Collection of Microalgae (CICCM). The CICCM was...
Algae.Tec has announced that, with the completion of the US$1M injection by Gencore, their nutraceutical plant upgrade in Cummings, Georgia, is progressing ahead of sched...
Stavanger, Norway-based Skretting, a 100+ year-old leader in the manufacture and supply of aquaculture feeds for fish and shrimp, has announced that they are now offering...
In one of the most comprehensive studies to date, University of North Carolina at Chapel Hill researchers have sequenced the genes of a harmful algal bloom, unveiling nev...
Nicolas Sainte-Foie writes for Labiotech.eu about French startup Algopack manufacturing bio-based plastics made from brown algae. Founded by Rémy Lucas in 2010 and manage...
The Energy Department (DOE) has announced the selection of six projects for up to $12.9 million in federal funding, entitled, “Project Definition for Pilot- and Demonstra...
Joy Lanzendorfer reports for NPR that, as seaweed continues to gain popularity for its nutritional benefits and culinary versatility, more people are taking up seaweed fo...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
Marlene Cimons, nexusmedianews.com reports that researchers at the University of California San Diego and Sapphire Energy have successfully grown a genetically engineered...