twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
NCMA Algae Tips
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Commercial Algae Professionals

Research

PHYCO2 and MSU pass Phase 1 in algae research project

April 20, 2016
AlgaeIndustryMagazine.com

PHYCO2's PBR in operation at MSU

PHYCO2’s PBR in operation at MSU

The research partnership between PHYCO2, an emerging algae growth and carbon dioxide sequestration company, and Michigan State University (MSU) has announced test results in Phase I of their multi-year trial to capture manmade carbon dioxide and create renewable alternative energy feedstock. They recently reported that Phase I proved the PHYCO2 patented algae photo bioreactor (APB) can capture significant amounts of CO2 for high-density algae cultivation.

PHYCO2’s patented technology optimizes algae growth by managing the growth parameters: light, CO2 and nutrients. PHYCO2 also developed a system that analyses and regulates the specific amount of time that algae needs to be exposed to light, as well as the time needed to rest in order to properly cultivate.

Within the first round of testing, the two-month period showed an algae density of 1.7 g/L, a CO2 absorption rate of 52 percent, and a productivity rate of 0.34 g/l solution/ day.

Built in the T.B. Simon Power Plant, PHYCO2’s photo bioreactor absorbs CO2 emissions directly from the plant, creating pure algae strands that can be used for a multitude of products. The team is preparing for a second round of testing, in which the focus will be on doubling the algae density and reaching a productivity rate that is eight times the Phase I rate.

“With the strong industry-university collaboration, the integration of the patented PHYCO2’s reactor and MSU selected algal strains could lead to a soon-commercially-available solution to sequester CO2 and produce high-value chemicals. Co-locating the APB with the power plant allows the process to utilize waste heat from the power plant to dry and process the produced algae to further improve the energy balance,” said Dr. Susie Liu, an assistant professor in the Department of Biosystems and Agricultural Engineering at Michigan State University.

“Results from Phase I testing demonstrates that our technology can be applied to manufacturers worldwide to reduce emissions, and create pure microalgae to be used as an alternate energy source, as we strive to create a market sustainable solution to address our environment without negatively impacting businesses,” said PHYCO2 CEO William Clary. “The next phases of testing will focus on how effective the photo bioreactor can be for power plants looking to reduce their carbon footprint, and how the technology can be implemented to absorb other airborne pollutants for further algae cultivation.”

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2016 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Western Morning News reports that Westcountry scientists in the U.K. are using algae to develop an innovative new method of cleaning up contaminated mine water while harv...
OriginClear Inc. and partner AlgEternal have announced that, based on AlgEternal’s field tests, they believe their pure algae concentrate, harvested with OriginClear tech...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
Scientists have been investigating the likely future impact of changing environmental conditions on ocean phytoplankton, which forms the basis of all the oceans' food cha...
Jessie Rack reports for NPR that demand for plant protein of all types is growing in concert with the growing interest in the U.S. to reduce meat consumption. People, fro...
Sarah Zhang writes in Wired Magazine that the single-cell green algae Chlamydomonas reinhardtii have an eyespot that makes use of light-sensitive proteins. One of them is...
Algae.Tec has announced that it has completed the commissioning and initial startup of an algae production plant to produce algae-based nutraceutical products. The plant ...
S V Krishna Chaitanya writes for the New Indian Express that a scientist from Chennai, the capital city of the Indian state of Tamil Nadu, in South India, is playing a ke...
The last post positioned algae solutions for bioremediation of poisoned water and soil that can reduce the risk of arsenic exposure and the onset of autism spectrum disor...
Kuo Chia-erh reports for Taipei Times that Taiwan Cement Corp, the nation’s leading cement supplier, has announced plans to expand its microalgae farm, which produces ast...
In New Zealand is an internationally significant collection of microalgae cultures known as the Cawthron Institute Culture Collection of Microalgae (CICCM). The CICCM was...