twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

PHYCO2 and MSU pass Phase 1 in algae research project

April 20, 2016
AlgaeIndustryMagazine.com

PHYCO2's PBR in operation at MSU

PHYCO2’s PBR in operation at MSU

The research partnership between PHYCO2, an emerging algae growth and carbon dioxide sequestration company, and Michigan State University (MSU) has announced test results in Phase I of their multi-year trial to capture manmade carbon dioxide and create renewable alternative energy feedstock. They recently reported that Phase I proved the PHYCO2 patented algae photo bioreactor (APB) can capture significant amounts of CO2 for high-density algae cultivation.

PHYCO2’s patented technology optimizes algae growth by managing the growth parameters: light, CO2 and nutrients. PHYCO2 also developed a system that analyses and regulates the specific amount of time that algae needs to be exposed to light, as well as the time needed to rest in order to properly cultivate.

Within the first round of testing, the two-month period showed an algae density of 1.7 g/L, a CO2 absorption rate of 52 percent, and a productivity rate of 0.34 g/l solution/ day.

Built in the T.B. Simon Power Plant, PHYCO2’s photo bioreactor absorbs CO2 emissions directly from the plant, creating pure algae strands that can be used for a multitude of products. The team is preparing for a second round of testing, in which the focus will be on doubling the algae density and reaching a productivity rate that is eight times the Phase I rate.

“With the strong industry-university collaboration, the integration of the patented PHYCO2’s reactor and MSU selected algal strains could lead to a soon-commercially-available solution to sequester CO2 and produce high-value chemicals. Co-locating the APB with the power plant allows the process to utilize waste heat from the power plant to dry and process the produced algae to further improve the energy balance,” said Dr. Susie Liu, an assistant professor in the Department of Biosystems and Agricultural Engineering at Michigan State University.

“Results from Phase I testing demonstrates that our technology can be applied to manufacturers worldwide to reduce emissions, and create pure microalgae to be used as an alternate energy source, as we strive to create a market sustainable solution to address our environment without negatively impacting businesses,” said PHYCO2 CEO William Clary. “The next phases of testing will focus on how effective the photo bioreactor can be for power plants looking to reduce their carbon footprint, and how the technology can be implemented to absorb other airborne pollutants for further algae cultivation.”

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
If we built a Green Friendship Bridge composed of 8,600 algae microfarms given to Mexican and Central American farmers in lieu of 1%, (13 miles) of additional border wall...
Bioenergy-news.com reports that Volkswagen showcased its algae biogas-powered vehicle at a biogas project based in El Torno Chiclana, a town in south-west Spain. The test...
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
Natural Icelandic astaxanthin supplier, ArcticFarma, has reached an agreement with a subsidiary of China-based BGG to rename itself in order to avoid market confusion. “B...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
Karen Phillips writes for deeperblue.com that algae are the alveoli in the ocean lungs of our planet, vitally important to the health of the seas as home, food source, sa...
Tom Lindfors writes in the New Richmond News about how the Roberts, Wisconsin, wastewater treatment plant – considered a minor utility designed to treat an average flow o...
Haley Gray reports for 5280.com that Upslope Brewing Company, in Boulder, Colorado, is one step closer to its goal of becoming a zero-waste brewery. The craft beer maker ...
Algae Health Sciences, Inc., a subsidiary of BGG, has announced that it has submitted a New Dietary Ingredient (NDI) to the US FDA for its flagship product AstaZine® Natu...
Fraunhofer-Gesellschaft reports in Science Daily that two algae species survived 16 months on the exterior of the International Space Station (ISS) despite extreme temper...
Dan Wood, at the University of Connecticut, writes that assistant extension educator of marine aquaculture at UConn’s Avery Point Campus, Anoushka Concepcion, spoke about...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...