Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Photoenzyme allows algae to produce hydrocarbons

September 4, 2017
AlgaeIndustryMagazine.com

Image of the FAP molecule while it converts the fatty acids in hydrocarbons under the blue light. The FAP is in the middle. On its left, the fatty acid molecules are yellow; on the right in purple, the hydrocarbon molecules. Credits: Caroline EPLE.

The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acids into hydrocarbons using light. This discovery is relevant in the quest of sustainable energy production.

Researchers at the CEA (French Atomic Energy Commission), the CNRS (French National Centre for Scientific Research), the ESRF, INSERM (French National Institute of Health and Medical Research) and the Universities of Aix-Marseille, Grenoble Alps and Paris-Sud have discovered an enzyme in the single-cell freshwater alga Chlorella which allows it to convert some of its constituent fatty acids into hydrocarbons using light energy only. This photoenzyme, which has been named “FAP” (Fatty Acid Photodecarboxylase) is of an extremely rare type, as only four enzymes powered by light have been identified to date.

The researchers believe that this is a major advance in the identification of these kind of biological mechanisms and opens up a new option for the synthesis of hydrocarbons by micro-organisms on an industrial scale.

In this study, researchers from the Institute of Biosciences and Biotechnologies of Aix-Marseille (CEA/CNRS/University of Aix-Marseille), identify this key enzyme for the synthesis of hydrocarbons, by following its activity and determining a list of potential candidate proteins using a proteomic analysis conducted at the Laboratory of Large Scale Biology (CEA/INSERM/University of Grenoble Alps).

The expression in the bacterium E. coli of the encoding gene for the main candidate protein has shown evidence of the production of hydrocarbons, thereby demonstrating that this enzyme is both necessary and sufficient for hydrocarbon synthesis. Characteristic analysis of the pure enzyme revealed that it is capable of splitting a fatty acid into a hydrocarbon molecule and a CO2 molecule, and that this activity requires light.

Researchers have also shown that a co-factor (a non-protein molecule, which is associated with the enzyme and is necessary for its activity) present in the enzyme permits the capture of blue light. The three-dimensional structure of the enzyme (see image), determined by X-ray diffraction analysis conducted on the fully-automated “MASSIF-1” beamline of the ESRF, in Grenoble, and kinetic absorption spectroscopy analyses done at the Institute of Integrative Cell Biology (CEA/CNRS/University of Paris-Sud), have led to the formulation of a model for the mechanism of the enzyme. The fatty acid is positioned in a hydrophobic tunnel, at the end of which the co-factor is located. The latter, upon excitation by blue light, removes an electron from the carboxyl group of the fatty acid, resulting in spontaneous decarboxylation to form a hydrocarbon molecule.

The discovery of this enzyme is of major and fundamental interest, given that only four biocatalysts capable of exploiting light energy (photoenzymes) are known. These are an enzyme for the repair of DNA, an enzyme for chlorophyll synthesis, and the reaction centers for the two photosystems that permit photosynthesis in plants and algae. FAP is at least ten times faster than the best-known enzyme for hydrocarbon synthesis, and uses light, thus potentially providing a highly effective biotechnological tool for the synthesis of hydrocarbons, either by the in vitro conversion of oils, or by the in vivoconversion of the membrane fatty acids of bacteria, yeasts or, ideally, microalgae.

Reference: D. Sorigué, et al, Science, 1 September 2017. DOI: 10.1126/science.aan6349​.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
If we built a Green Friendship Bridge composed of 8,600 algae microfarms given to Mexican and Central American farmers in lieu of 1%, (13 miles) of additional border wall...
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
In Australia, the New South Wales Deep Green Biotech Hub (DGBH) has been launched as an enabling incubator environment to foster the development of algae as a cost effect...
Cheryl Katz writes in National Geographic that Iceland’s last living lake balls are disappearing. The fluffy green supersize diatoms as large as a head of cabbage are one...
Forbes is running an interview with Bren Smith, an Ashoka Fellow and the founder of GreenWave, an organization dedicated to restoring oceans, mitigating climate change an...
In one of the most comprehensive studies to date, University of North Carolina at Chapel Hill researchers have sequenced the genes of a harmful algal bloom, unveiling nev...
Nicolas Sainte-Foie writes for Labiotech.eu about French startup Algopack manufacturing bio-based plastics made from brown algae. Founded by Rémy Lucas in 2010 and manage...
Kailua-Kona, Hawaii-based Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and Living Ink Technologies of Den...
The University of Kentucky (UK) Center for Applied Energy Research’s (CAER) Biofuels and Environmental Catalysis Group has received a $1.2 million U.S. Department of Ener...
The genome of the fuel-producing green microalga Botryococcus braunii has been sequenced by a team of researchers led by a group at Texas A&M AgriLife Research. The r...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...