Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Photoenzyme allows algae to produce hydrocarbons

September 4, 2017
AlgaeIndustryMagazine.com

Image of the FAP molecule while it converts the fatty acids in hydrocarbons under the blue light. The FAP is in the middle. On its left, the fatty acid molecules are yellow; on the right in purple, the hydrocarbon molecules. Credits: Caroline EPLE.

The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acids into hydrocarbons using light. This discovery is relevant in the quest of sustainable energy production.

Researchers at the CEA (French Atomic Energy Commission), the CNRS (French National Centre for Scientific Research), the ESRF, INSERM (French National Institute of Health and Medical Research) and the Universities of Aix-Marseille, Grenoble Alps and Paris-Sud have discovered an enzyme in the single-cell freshwater alga Chlorella which allows it to convert some of its constituent fatty acids into hydrocarbons using light energy only. This photoenzyme, which has been named “FAP” (Fatty Acid Photodecarboxylase) is of an extremely rare type, as only four enzymes powered by light have been identified to date.

The researchers believe that this is a major advance in the identification of these kind of biological mechanisms and opens up a new option for the synthesis of hydrocarbons by micro-organisms on an industrial scale.

In this study, researchers from the Institute of Biosciences and Biotechnologies of Aix-Marseille (CEA/CNRS/University of Aix-Marseille), identify this key enzyme for the synthesis of hydrocarbons, by following its activity and determining a list of potential candidate proteins using a proteomic analysis conducted at the Laboratory of Large Scale Biology (CEA/INSERM/University of Grenoble Alps).

The expression in the bacterium E. coli of the encoding gene for the main candidate protein has shown evidence of the production of hydrocarbons, thereby demonstrating that this enzyme is both necessary and sufficient for hydrocarbon synthesis. Characteristic analysis of the pure enzyme revealed that it is capable of splitting a fatty acid into a hydrocarbon molecule and a CO2 molecule, and that this activity requires light.

Researchers have also shown that a co-factor (a non-protein molecule, which is associated with the enzyme and is necessary for its activity) present in the enzyme permits the capture of blue light. The three-dimensional structure of the enzyme (see image), determined by X-ray diffraction analysis conducted on the fully-automated “MASSIF-1” beamline of the ESRF, in Grenoble, and kinetic absorption spectroscopy analyses done at the Institute of Integrative Cell Biology (CEA/CNRS/University of Paris-Sud), have led to the formulation of a model for the mechanism of the enzyme. The fatty acid is positioned in a hydrophobic tunnel, at the end of which the co-factor is located. The latter, upon excitation by blue light, removes an electron from the carboxyl group of the fatty acid, resulting in spontaneous decarboxylation to form a hydrocarbon molecule.

The discovery of this enzyme is of major and fundamental interest, given that only four biocatalysts capable of exploiting light energy (photoenzymes) are known. These are an enzyme for the repair of DNA, an enzyme for chlorophyll synthesis, and the reaction centers for the two photosystems that permit photosynthesis in plants and algae. FAP is at least ten times faster than the best-known enzyme for hydrocarbon synthesis, and uses light, thus potentially providing a highly effective biotechnological tool for the synthesis of hydrocarbons, either by the in vitro conversion of oils, or by the in vivoconversion of the membrane fatty acids of bacteria, yeasts or, ideally, microalgae.

Reference: D. Sorigué, et al, Science, 1 September 2017. DOI: 10.1126/science.aan6349​.

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
Algatech has announced the opening of Algatech Inc., a New York City-based subsidiary created to serve the North American market. The company has appointed Ken Seguine to...
Sex self-destruction represents a fascinating new scientific mystery that includes climate chaos, ghost forests, temperature spikes, fierce storms, colossal nutrient coll...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...
Globally, an increase in water pollution is pushing scientists and environmental care specialists to seek best ways of preserving and maintaining sources of safe drinking...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
JapanNews.com reports that Euglena Co., a Tokyo-based maker of nutritional supplements, is spending ¥5.8 billion ($5.3 million USD) on building a test refinery that conve...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...
Global EcoPower (GEP), of Aix-en-Provence, France, has signed a 5-year partnership contract with the French Alternative Energies and Atomic Energy Commission (CEA). This ...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...