[ad#PhycoBiosciences AIM Interview]

Research

 

Olivucci Models Potential of Toxic Algae Photoreceptors

February 1, 2012
AlgaeIndustryMagazine.com

1.	Massimo Olivucci, Ph.D., a research professor focusing on Anabaena sensory rhodopsin (ASR) bacteria

Massimo Olivucci, Ph.D., a research professor focusing on Anabaena sensory rhodopsin (ASR) bacteria

Blue-green algae is causing havoc in Midwestern lakes saturated with agricultural run-off, but researchers in a northwest Ohio lab are using supercomputers to study a closely related strain of the toxic cyanobacteria to harness its beneficial properties. Massimo Olivucci, Ph.D., a research professor of chemistry at Bowling Green State University (BGSU), is focusing on Anabaena sensory rhodopsin (ASR) bacteria, which has served as a model for studies of most cyanobacteria since its genome was fully mapped in 1999.

“An in-depth understanding of light sensing, harvesting and energy conversion in Anabaena may allow us to engineer this and related organisms to thrive in diverse illumination conditions,” said Olivucci. “Such new properties would contribute to the field of alternative energy via the microbial conversion of light energy into biomasses, oxygen and hydrogen. Biophysical studies of the bacterial photoreceptor and its underlying molecular mechanisms can help us to understand its biotechnological potentials and the associated environmental implications.”

Using sunlight as an energy source, a sensory protein within ASR detects light of two different colors and behaves like the “eye” of Anabaena, using its green-light sensitivity to activate a cascade of reactions. In sophisticated computer simulations Olivucci created at the Ohio Supercomputer Center (OSC), he found that a short fragment of the long retinal chromophore backbone of ASR undergoes a complete clockwise rotation powered by the energy carried by two photons of light.

2.	Anabaena Sensory Rhodopsin: In a simulation created at the Ohio Supercomputer Center a short fragment of the long retinal chromophore backbone of Anabaena Sensory Rhodopsin undergoes a complete clockwise rotation powered by the energy carried by two photons. (Olivucci/BGSU)

Anabaena Sensory Rhodopsin: In a simulation created at the Ohio Supercomputer Center a short fragment of the long retinal chromophore backbone of Anabaena Sensory Rhodopsin undergoes a complete clockwise rotation powered by the energy carried by two photons. (Olivucci/BGSU)

“We are constructing quantum-mechanical and molecular-mechanical models on Ohio Supercomputer Center systems,” Olivucci explained. “Past simulations have revealed that light induces a molecular-level rotary motion in the protein interior.

“Now, the same computer models will be used to engineer hundreds of mutants that display programmed spectroscopic, photochemical and photobiological properties and identify which mutants should be prepared in the laboratory. This new approach constitutes a unique opportunity for developing computational tools useful for understanding the molecular factors that control the spectra of proteins and their photo-responsive properties in general.”

Olivucci’s research is expected to lead to an unprecedented tool by which hundreds to thousands of mutant models can be screened for wanted properties, such as color, excited state lifetime or photochemical transformations. This will provide tailored genetic materials for generating organisms that, for instance, can thrive under alternative light conditions and modulate biomass production or be used in engineering applications.

Olivucci’s research project, “Computational engineering and predictions of excited state properties of bacterial photoreceptor mutants,” is supported by the Ohio Board of Regents and BGSU. Initial computational work relating to the project was published in the prestigious Proceedings of the National Academy of Sciences USA in 2010.

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates!

From The A.I.M. Archives

— Refresh Page for More Choices
Professor David Sinton of the University of Toronto’s Faculty of Applied Science & Engineering has been awarded a 2015 E.W.R. Steacie Memorial Fellowship from the Nat...
The World Health Organization (WHO) estimates over 200 million people worldwide are exposed to arsenic concentrations in drinking water that exceed the guideline limit of...
A Memorandum of Agreement has been signed by Aerospace Malaysia Innovation Centre (AMIC), Airbus Group, University of Malaya, University Malaysia Terengganu, The Universi...
Fiona Macrae writes for the London Independent that British scientists claim to have found a green alga that produces a sugar-like chemical to protect it from harm. When ...
Judy Siegel-Itzkovich writes in the Jerusalem Post that Dr. Iftach Yacoby and his research team at Tel Aviv University, in Israel, have genetically altered microalgae to ...
Tom Lindfors writes in the New Richmond News about how the Roberts, Wisconsin, wastewater treatment plant – considered a minor utility designed to treat an average flow o...