Research

Olivucci Models Potential of Toxic Algae Photoreceptors

February 1, 2012
AlgaeIndustryMagazine.com

1.	Massimo Olivucci, Ph.D., a research professor focusing on Anabaena sensory rhodopsin (ASR) bacteria

Massimo Olivucci, Ph.D., a research professor focusing on Anabaena sensory rhodopsin (ASR) bacteria

Blue-green algae is causing havoc in Midwestern lakes saturated with agricultural run-off, but researchers in a northwest Ohio lab are using supercomputers to study a closely related strain of the toxic cyanobacteria to harness its beneficial properties. Massimo Olivucci, Ph.D., a research professor of chemistry at Bowling Green State University (BGSU), is focusing on Anabaena sensory rhodopsin (ASR) bacteria, which has served as a model for studies of most cyanobacteria since its genome was fully mapped in 1999.

“An in-depth understanding of light sensing, harvesting and energy conversion in Anabaena may allow us to engineer this and related organisms to thrive in diverse illumination conditions,” said Olivucci. “Such new properties would contribute to the field of alternative energy via the microbial conversion of light energy into biomasses, oxygen and hydrogen. Biophysical studies of the bacterial photoreceptor and its underlying molecular mechanisms can help us to understand its biotechnological potentials and the associated environmental implications.”

Using sunlight as an energy source, a sensory protein within ASR detects light of two different colors and behaves like the “eye” of Anabaena, using its green-light sensitivity to activate a cascade of reactions. In sophisticated computer simulations Olivucci created at the Ohio Supercomputer Center (OSC), he found that a short fragment of the long retinal chromophore backbone of ASR undergoes a complete clockwise rotation powered by the energy carried by two photons of light.

2.	Anabaena Sensory Rhodopsin: In a simulation created at the Ohio Supercomputer Center a short fragment of the long retinal chromophore backbone of Anabaena Sensory Rhodopsin undergoes a complete clockwise rotation powered by the energy carried by two photons. (Olivucci/BGSU)

Anabaena Sensory Rhodopsin: In a simulation created at the Ohio Supercomputer Center a short fragment of the long retinal chromophore backbone of Anabaena Sensory Rhodopsin undergoes a complete clockwise rotation powered by the energy carried by two photons. (Olivucci/BGSU)

“We are constructing quantum-mechanical and molecular-mechanical models on Ohio Supercomputer Center systems,” Olivucci explained. “Past simulations have revealed that light induces a molecular-level rotary motion in the protein interior.

“Now, the same computer models will be used to engineer hundreds of mutants that display programmed spectroscopic, photochemical and photobiological properties and identify which mutants should be prepared in the laboratory. This new approach constitutes a unique opportunity for developing computational tools useful for understanding the molecular factors that control the spectra of proteins and their photo-responsive properties in general.”

Olivucci’s research is expected to lead to an unprecedented tool by which hundreds to thousands of mutant models can be screened for wanted properties, such as color, excited state lifetime or photochemical transformations. This will provide tailored genetic materials for generating organisms that, for instance, can thrive under alternative light conditions and modulate biomass production or be used in engineering applications.

Olivucci’s research project, “Computational engineering and predictions of excited state properties of bacterial photoreceptor mutants,” is supported by the Ohio Board of Regents and BGSU. Initial computational work relating to the project was published in the prestigious Proceedings of the National Academy of Sciences USA in 2010.

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates!

From The A.I.M. Archives

— Refresh Page for More Choices
Montague, Prince Edward Island-based Solarvest has announced that it has used its algal-based production platform to express bioactive therapeutic proteins. The proof of ...
The European (FP7) algae project Sustainable PoLymers from Algae Sugars and Hydrocarbons (SPLASH) has been developing a platform technology for the conversion of third ge...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
Jeff Gelski writes in foodbusinessnews.net that algae oil is now in the toolbox of alternative oils shown to replace partially hydrogenated oils (PHOs), which cause trans...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
John O’Renick, in this insightful piece from the Portland (Oregon) Tribune, writes about the problems we create from treating waste streams as garbage to be disposed of i...
Natacha Tatu writes in Worldcrunch about a 72-year old French chef who has taken on the challenge of bringing spirulina to the malnourished youth of the Central Africa. F...
OriginClear Inc. and partner AlgEternal have announced that, based on AlgEternal’s field tests, they believe their pure algae concentrate, harvested with OriginClear tech...
Studies conducted by EnAlgae partners in Ireland, France and Belgium point the way to seaweed being a viable and sustainable feedstock for the future in North West Europe...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
In Japan, the Algae Biomass Energy System Development Research Center, headed by Professor Makoto Watanabe, was established at the University of Tsukuba on July 1. The ne...
Bigelow Laboratory, of East Boothbay, Maine, and the University of Mississippi have formed a five-year Strategic Inter-Institutional Partnership Agreement for collaborati...
Mark Harris writes in the Guardian about a pilot project in Las Cruces, New Mexico, where Dr. Peter Lammers, a professor in algal bioenergy at Arizona State University, a...