[ad#PhycoBiosciences AIM Interview]

Research

NSF Gives $2mil to OSU for Diatom Study

September 23, 2012
AlgaeIndustryMagazine.com

Diatom

The National Science Foundation has awarded a four-year, $2 million grant to Engineers at Oregon State University, in Corvallis, OR, to study if diatoms can make biofuel production from algae truly cost-effective by simultaneously producing other valuable products such as semiconductors, biomedical products and even health foods.

Greg Rorrer, an OSU professor and head of the School of Chemical, Biological and Environmental Engineering has studied the remarkable power of diatoms for more than a decade. “We have shown how diatoms can be used to produce semiconductor materials, chitin fibers for biomedical applications, or the lipids needed to make biofuels,” he said. “We believe that we can produce all of these products in one facility at the same time and move easily from one product to the other. The concept is called a ‘photosynthetic biorefinery.’

“This NSF program is intended to support long-range concepts for a sustainable future, but in fact we’re demonstrating much of the science behind these technologies right now,” he adds.

Biofuels are a comparatively low-value product, and existing technologies have so far been held back by cost. This program, according to the researchers, may help produce products with much higher value at the same time – like glucosamine, a food product commonly sold as a health food supplement – giving the entire process more economic sense.

Much of the cost in this approach, researchers say, is not the raw materials involved but the facilities needed for production. As part of the work at OSU, they plan to develop mathematical models so that various options can be tested and computers used to perfect the technology before actually building it.

The OSU scientists point out that the key to all of this is the diatom itself, a natural nanotechnology factory that has been found in the fossil record for more than 100 million years. Diatoms evolved sometime around the Jurassic Period when dinosaurs flourished. A major component of phytoplankton, diatoms have rigid microscopic shell walls made out of silica, and the capability to biosynthesize various compounds of commercial value.

“Regular algae don’t make everything that diatoms can make,” Rorrer said. “This is the only organism we know of that can create organized structures at the nano-level and naturally produce such high-value products. With the right components, they will make what you want them to make.”

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Much of the development of the algae industry in 2014 was driven by domestic and international alliances, partnerships, and mergers that brought complementary skills and ...
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
Fort Myers, FL-based Algenol, and India's Reliance Industries Ltd., have deployed India’s first Algenol algae production platform. The demonstration module is located nea...
In a recent study, published in PLOS ONE Journal, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
Caroline Scott-Thomas reports on Food Navigator about an online algae discussion on the social media site Reddit where Mars' chief agricultural officer Howard-Yana Shapir...
Nutritionaloutlook.com this month gives a well-rounded survey of how algae’s uses in food, beverage, and supplements keep expanding. Here is an excerpt: Thanks to the 201...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
Using a malaria parasite protein produced from algae, paired with an immune-boosting cocktail suitable for use in humans, researchers at UC San Diego School of Medicine g...
Solazyme has announced that total revenue for the fourth quarter of 2014 was $14.5 million, compared with $11.3 million in the fourth quarter of 2013, an increase of 29%....
James Goodman writes in the democratandchronicle.com about Jeffrey Lodge, an associate professor of biological sciences at Rochester Institute of Technology, who knows wh...
As of March 1, 2015, bbi-biotech GmbH, of Berlin, Germany, has begun integrating IGV Biotech GmbH’s photobioreactors into its own life science product portfolio. A former...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
Jeff Gelski writes in foodbusinessnews.net that algae oil is now in the toolbox of alternative oils shown to replace partially hydrogenated oils (PHOs), which cause trans...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...