[ad#PhycoBiosciences AIM Interview]

Research

NSF Gives $2mil to OSU for Diatom Study

September 23, 2012
AlgaeIndustryMagazine.com

Diatom

The National Science Foundation has awarded a four-year, $2 million grant to Engineers at Oregon State University, in Corvallis, OR, to study if diatoms can make biofuel production from algae truly cost-effective by simultaneously producing other valuable products such as semiconductors, biomedical products and even health foods.

Greg Rorrer, an OSU professor and head of the School of Chemical, Biological and Environmental Engineering has studied the remarkable power of diatoms for more than a decade. “We have shown how diatoms can be used to produce semiconductor materials, chitin fibers for biomedical applications, or the lipids needed to make biofuels,” he said. “We believe that we can produce all of these products in one facility at the same time and move easily from one product to the other. The concept is called a ‘photosynthetic biorefinery.’

“This NSF program is intended to support long-range concepts for a sustainable future, but in fact we’re demonstrating much of the science behind these technologies right now,” he adds.

Biofuels are a comparatively low-value product, and existing technologies have so far been held back by cost. This program, according to the researchers, may help produce products with much higher value at the same time – like glucosamine, a food product commonly sold as a health food supplement – giving the entire process more economic sense.

Much of the cost in this approach, researchers say, is not the raw materials involved but the facilities needed for production. As part of the work at OSU, they plan to develop mathematical models so that various options can be tested and computers used to perfect the technology before actually building it.

The OSU scientists point out that the key to all of this is the diatom itself, a natural nanotechnology factory that has been found in the fossil record for more than 100 million years. Diatoms evolved sometime around the Jurassic Period when dinosaurs flourished. A major component of phytoplankton, diatoms have rigid microscopic shell walls made out of silica, and the capability to biosynthesize various compounds of commercial value.

“Regular algae don’t make everything that diatoms can make,” Rorrer said. “This is the only organism we know of that can create organized structures at the nano-level and naturally produce such high-value products. With the right components, they will make what you want them to make.”

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
On September 25, 2014, a photobioreactor for the cultivation of algae was officially unveiled during a seminar at Thomas More University College in Mechelen, Belgium. Und...
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Tess Riley writes in TheGuardian.com about how spirulina may be able to combat malnutrition in developing countries. Spirulina is one of the oldest life forms on Earth, c...
Don Willmott writes in Huffington Post about Nevada-based Algae Systems, which has built a test plant on Alabama's Mobile Bay to not only turn algae into diesel fuel but ...
Jeff Gelski writes in foodbusinessnews.net that algae oil is now in the toolbox of alternative oils shown to replace partially hydrogenated oils (PHOs), which cause trans...
There are around 4500 dairy farms in Victoria, Australia, according to Business Victoria. Together they produced about 86 per cent of Australia’s dairy product exports, w...
Rich McEachran writes in the Guardian that, in the process of surfacing a road, layers of asphalt – which is composed mostly of bitumen (a byproduct of crude oil distilla...
Scientists have been investigating the likely future impact of changing environmental conditions on ocean phytoplankton, which forms the basis of all the oceans' food cha...
Jessie Rack reports for NPR that demand for plant protein of all types is growing in concert with the growing interest in the U.S. to reduce meat consumption. People, fro...
Joelle Kovach writes in the Peterborough Examiner that a company developing new technologies using the algae euglena to purify water has opened a new facility near Trent ...
Tel Aviv, Israel-based UniVerve Ltd. has begun scaling-up its technological process for algae cultivation. The oil, which can be extracted with off-the-shelf wet extracti...
John Wiegand writes for MiBiz.com that, as the craft brewing industry matures, many West Michigan producers have started seeking out technology that provides sustainable ...