[ad#PhycoBiosciences AIM Interview]

Research

NSF Gives $2mil to OSU for Diatom Study

September 23, 2012
AlgaeIndustryMagazine.com

Diatom

The National Science Foundation has awarded a four-year, $2 million grant to Engineers at Oregon State University, in Corvallis, OR, to study if diatoms can make biofuel production from algae truly cost-effective by simultaneously producing other valuable products such as semiconductors, biomedical products and even health foods.

Greg Rorrer, an OSU professor and head of the School of Chemical, Biological and Environmental Engineering has studied the remarkable power of diatoms for more than a decade. “We have shown how diatoms can be used to produce semiconductor materials, chitin fibers for biomedical applications, or the lipids needed to make biofuels,” he said. “We believe that we can produce all of these products in one facility at the same time and move easily from one product to the other. The concept is called a ‘photosynthetic biorefinery.’

“This NSF program is intended to support long-range concepts for a sustainable future, but in fact we’re demonstrating much of the science behind these technologies right now,” he adds.

Biofuels are a comparatively low-value product, and existing technologies have so far been held back by cost. This program, according to the researchers, may help produce products with much higher value at the same time – like glucosamine, a food product commonly sold as a health food supplement – giving the entire process more economic sense.

Much of the cost in this approach, researchers say, is not the raw materials involved but the facilities needed for production. As part of the work at OSU, they plan to develop mathematical models so that various options can be tested and computers used to perfect the technology before actually building it.

The OSU scientists point out that the key to all of this is the diatom itself, a natural nanotechnology factory that has been found in the fossil record for more than 100 million years. Diatoms evolved sometime around the Jurassic Period when dinosaurs flourished. A major component of phytoplankton, diatoms have rigid microscopic shell walls made out of silica, and the capability to biosynthesize various compounds of commercial value.

“Regular algae don’t make everything that diatoms can make,” Rorrer said. “This is the only organism we know of that can create organized structures at the nano-level and naturally produce such high-value products. With the right components, they will make what you want them to make.”

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Cyanobacteria, also known as blue-green algae because of their color, have endured for more than 2.5 billion years, providing ample time to adapt to changes in the Earth'...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
Kevin Quon writes in Seeking Alpha about the financial plights and pivots of Solazyme, the algae industry’s most high profile recent IPO. In a year that started with a sh...
Fort Myers, FL-based Algenol, and India's Reliance Industries Ltd., have deployed India’s first Algenol algae production platform. The demonstration module is located nea...
In a recent study, published in PLOS ONE Journal, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
Kailua Kona, Hawaii-based Cyanotech has announced financial results for the third quarter and first nine months of fiscal year 2015, ended December 31, 2014. For the thir...
Don Willmott writes in Huffington Post about Nevada-based Algae Systems, which has built a test plant on Alabama's Mobile Bay to not only turn algae into diesel fuel but ...
James Goodman writes in the democratandchronicle.com about Jeffrey Lodge, an associate professor of biological sciences at Rochester Institute of Technology, who knows wh...
Cellana, Inc., with operations in San Diego and Kailua-Kona, Hawaii, has announced that David Anton, Ph.D., has been appointed Chief Operating Officer and elected to the ...
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
SciDev.Net’s South Asia desk reports that Indian scientists working on producing biofuel from algae cultured in municipal wastewater are enthused by the findings of a rec...
John O’Renick, in this insightful piece from the Portland (Oregon) Tribune, writes about the problems we create from treating waste streams as garbage to be disposed of i...