[ad#PhycoBiosciences AIM Interview]

Research

NSF Gives $2mil to OSU for Diatom Study

September 23, 2012
AlgaeIndustryMagazine.com

Diatom

The National Science Foundation has awarded a four-year, $2 million grant to Engineers at Oregon State University, in Corvallis, OR, to study if diatoms can make biofuel production from algae truly cost-effective by simultaneously producing other valuable products such as semiconductors, biomedical products and even health foods.

Greg Rorrer, an OSU professor and head of the School of Chemical, Biological and Environmental Engineering has studied the remarkable power of diatoms for more than a decade. “We have shown how diatoms can be used to produce semiconductor materials, chitin fibers for biomedical applications, or the lipids needed to make biofuels,” he said. “We believe that we can produce all of these products in one facility at the same time and move easily from one product to the other. The concept is called a ‘photosynthetic biorefinery.’

“This NSF program is intended to support long-range concepts for a sustainable future, but in fact we’re demonstrating much of the science behind these technologies right now,” he adds.

Biofuels are a comparatively low-value product, and existing technologies have so far been held back by cost. This program, according to the researchers, may help produce products with much higher value at the same time – like glucosamine, a food product commonly sold as a health food supplement – giving the entire process more economic sense.

Much of the cost in this approach, researchers say, is not the raw materials involved but the facilities needed for production. As part of the work at OSU, they plan to develop mathematical models so that various options can be tested and computers used to perfect the technology before actually building it.

The OSU scientists point out that the key to all of this is the diatom itself, a natural nanotechnology factory that has been found in the fossil record for more than 100 million years. Diatoms evolved sometime around the Jurassic Period when dinosaurs flourished. A major component of phytoplankton, diatoms have rigid microscopic shell walls made out of silica, and the capability to biosynthesize various compounds of commercial value.

“Regular algae don’t make everything that diatoms can make,” Rorrer said. “This is the only organism we know of that can create organized structures at the nano-level and naturally produce such high-value products. With the right components, they will make what you want them to make.”

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
Don Willmott writes in Huffington Post about Nevada-based Algae Systems, which has built a test plant on Alabama's Mobile Bay to not only turn algae into diesel fuel but ...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
Rich McEachran writes in the Guardian that, in the process of surfacing a road, layers of asphalt – which is composed mostly of bitumen (a byproduct of crude oil distilla...
Currently made most often from petroleum and natural gas, ethylene is used in the manufacture of plastics and polyester, and ranks as the largest petrochemical produced b...
Astaxanthin has been widely used in the aquaculture industry for pigmentation of salmon, trout and shrimp; used for its antioxidant and other health benefits in the nutra...
The Chesapeake Bay Seed Capital Fund, located in College Park, Maryland, has invested $150,000 into Manta Biofuel LLC, a company that produces crude oil from algae at a c...
Nevele, Belgium-based TomAlgae is developing freeze-dried microalgae for feed in shrimp hatcheries. The company has created its own microalgal “cultivar” and manufactures...
A Memorandum of Agreement has been signed by Aerospace Malaysia Innovation Centre (AMIC), Airbus Group, University of Malaya, University Malaysia Terengganu, The Universi...
The Green Friendship Bridge series examines a simple question: “What makes better sense, extending the border wall with Mexico 1,300 miles or taking 13 miles of fence inv...
Natural Icelandic astaxanthin supplier, ArcticFarma, has reached an agreement with a subsidiary of China-based BGG to rename itself in order to avoid market confusion. “B...