[ad name=”PhycoBiosciences AIM Interview”]

Research

NREL increases hydrogen production from algae

February 11, 2014
AlgaeIndustryMagazine.com

National Renewable Energy Laboratory in Golden, Colorado

National Renewable Energy Laboratory in Golden, Colorado

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The finding suggests ways to increase the production of hydrogen by algae, which could help turn hydrogen into a viable alternative fuel for transportation.

Using sunlight and water to produce potential transportation fuels such as hydrogen is considered a promising solution in the quest for developing clean, abundant, domestic alternatives to petroleum.

NREL Scientist Alexandra Dubini

NREL Scientist Alexandra Dubini

A paper on the discovery, “Identification of global ferredoxin interaction networks in in Chlamydomonas reinhardtii,” appears online in The Journal of Biological Chemistry. The authors note that Chlamydomonas reinhardtii contains six chloroplast-localized ferredoxins (the iron-sulfur-containing redox mediators) whose exact functions are still unclear. C. reinhardtii often serves as a model for other algae strains because its genome is sequenced and it is amenable to genetic modification.

By analyzing the interacting partners and reactions catalyzed by each of the six ferredoxins (FDX), they found that FDX1 serves as the primary electron donor to hydrogen production via photosynthesis. FDX2 can do the job, but at less than half the rate, while FDX3 through FDX6 appear to play no role in this particular reaction.

In technical terms, the NREL scientists deconvoluted the complex network of redox reactions centered in the six iron-sulfur-containing algal ferredoxins. By revealing that only two of them promote electron transfer to and from hydrogenases, they helped extend the understanding of electron competition at the level of the ferredoxin.

“When we tested all the ferredoxins as electron donors, the best rate was obtained with FDX1,” said NREL Scientist Alexandra Dubini, one of the authors for the paper. Lead authors are Erin Peden and Marko Boem, with contributions from NREL colleagues David Mulder, ReAnna Davis, William Old, Paul King, Maria Ghirardi and Dubini.

The discovery could lead to ways to stem the flow of electrons to the other pathways, forcing more electrons through the FDX1 pathway for increased hydrogen production, Dubini said. “There is this competition for photosynthetic reductant among different pathways and ferredoxins distribute electrons among the various other pathways, depending on the conditions and requirements of the cell.”

Recent papers on the same green alga species indicate that it is possible to genetically eliminate certain competitive electron-utilizing pathways, and that directing more electrons instead towards the cell’s hydrogenase does increase hydrogen production. In an industrial setting, green algal mutant strains optimized for hydrogen gas production would be cultivated in a sealed bioreactor and the hydrogen gas produced would be collected and stored for use in fuel cells.

Dubini said that day could be a long way off, noting that so far this is just fundamental science. “But by exploring all the different barriers to hydrogen production we are gaining a much better understanding of the functions of the ferredoxins and their involvement in hydrogen production – and that is very exciting,” she added.

The work was supported by DOE’s Office of Science.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
A new $1 million relationship between Michigan State University and ExxonMobil will expand research in the fundamental science to advance algae-based fuels. Dr. David Kra...
Glass tubing manufacturer SCHOTT, and Algatechnologies Ltd. (Algatech), a commercial algae producer and one of the largest manufacturers of natural astaxanthin, have part...
Tel Aviv, Israel-based UniVerve Ltd. has begun scaling-up its technological process for algae cultivation. The oil, which can be extracted with off-the-shelf wet extracti...
The Chesapeake Bay Seed Capital Fund, located in College Park, Maryland, has invested $150,000 into Manta Biofuel LLC, a company that produces crude oil from algae at a c...
The Technical University of Munich (TUM) has built a one-of-a-kind technical facility for algae cultivation at the Ludwig Bölkow Campus in Ottobrunn, to the south of Muni...
The Symbiosis Center in Denmark is exploring the industrial potential of microalgae, reports EUobserver's Regional Focus magazine. Using CO2 and light to produce valuable...
Hannah Osborne writes in the International Business Times that algae has been genetically engineered to kill cancer cells without harming healthy cells. The algae nanopar...
Bloomberg reports that ANA Holdings Inc., Japan’s largest airline, plans to use a Euglena Co. biofuel made from algae. ANA will use a mix of about 10 percent of the algae...
Algae producers moving from pilot to commercial applications require quick adaptation to algae harvesting capacity of hundreds and even thousands of cubic meters per day....
Algatechnologies Ltd. has launched its AstaPure® 5% Natural Astaxanthin oleoresin, derived from Haematococcus pluvialis microalgae. This latest addition to the AstaPure f...
I’m an aquanaut teen. I was born in immersion in 2050 in an underwater farm called “Aequorea” off the coast of Rio de Janeiro. Bio-inspired, the farm draws its name from ...
The new algae raceway testing facility, opening February 4 at Sandia National Laboratories in Livermore, California, paves a direct path between laboratory research and s...