[ad name=”PhycoBiosciences AIM Interview”]

Research

NREL increases hydrogen production from algae

February 11, 2014
AlgaeIndustryMagazine.com

National Renewable Energy Laboratory in Golden, Colorado

National Renewable Energy Laboratory in Golden, Colorado

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The finding suggests ways to increase the production of hydrogen by algae, which could help turn hydrogen into a viable alternative fuel for transportation.

Using sunlight and water to produce potential transportation fuels such as hydrogen is considered a promising solution in the quest for developing clean, abundant, domestic alternatives to petroleum.

NREL Scientist Alexandra Dubini

NREL Scientist Alexandra Dubini

A paper on the discovery, “Identification of global ferredoxin interaction networks in in Chlamydomonas reinhardtii,” appears online in The Journal of Biological Chemistry. The authors note that Chlamydomonas reinhardtii contains six chloroplast-localized ferredoxins (the iron-sulfur-containing redox mediators) whose exact functions are still unclear. C. reinhardtii often serves as a model for other algae strains because its genome is sequenced and it is amenable to genetic modification.

By analyzing the interacting partners and reactions catalyzed by each of the six ferredoxins (FDX), they found that FDX1 serves as the primary electron donor to hydrogen production via photosynthesis. FDX2 can do the job, but at less than half the rate, while FDX3 through FDX6 appear to play no role in this particular reaction.

In technical terms, the NREL scientists deconvoluted the complex network of redox reactions centered in the six iron-sulfur-containing algal ferredoxins. By revealing that only two of them promote electron transfer to and from hydrogenases, they helped extend the understanding of electron competition at the level of the ferredoxin.

“When we tested all the ferredoxins as electron donors, the best rate was obtained with FDX1,” said NREL Scientist Alexandra Dubini, one of the authors for the paper. Lead authors are Erin Peden and Marko Boem, with contributions from NREL colleagues David Mulder, ReAnna Davis, William Old, Paul King, Maria Ghirardi and Dubini.

The discovery could lead to ways to stem the flow of electrons to the other pathways, forcing more electrons through the FDX1 pathway for increased hydrogen production, Dubini said. “There is this competition for photosynthetic reductant among different pathways and ferredoxins distribute electrons among the various other pathways, depending on the conditions and requirements of the cell.”

Recent papers on the same green alga species indicate that it is possible to genetically eliminate certain competitive electron-utilizing pathways, and that directing more electrons instead towards the cell’s hydrogenase does increase hydrogen production. In an industrial setting, green algal mutant strains optimized for hydrogen gas production would be cultivated in a sealed bioreactor and the hydrogen gas produced would be collected and stored for use in fuel cells.

Dubini said that day could be a long way off, noting that so far this is just fundamental science. “But by exploring all the different barriers to hydrogen production we are gaining a much better understanding of the functions of the ferredoxins and their involvement in hydrogen production – and that is very exciting,” she added.

The work was supported by DOE’s Office of Science.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Agcore Technologies LLC, producer of Agcore Spirulina, has announced that their 2016 expansion project to support their growing aquafeed demand is in the completion proce...
Tom Lindfors writes in the New Richmond News about how the Roberts, Wisconsin, wastewater treatment plant – considered a minor utility designed to treat an average flow o...
Forbes is running an interview with Bren Smith, an Ashoka Fellow and the founder of GreenWave, an organization dedicated to restoring oceans, mitigating climate change an...
The Energy Department (DOE) has announced the selection of six projects for up to $12.9 million in federal funding, entitled, “Project Definition for Pilot- and Demonstra...
Joy Lanzendorfer reports for NPR that, as seaweed continues to gain popularity for its nutritional benefits and culinary versatility, more people are taking up seaweed fo...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...
PhysOrg reports that recent efforts have been made by researchers in Japan to reduce the cost of biodiesel production by using pulsed electric fields (PEF) to extract hyd...
Marlene Cimons, nexusmedianews.com reports that researchers at the University of California San Diego and Sapphire Energy have successfully grown a genetically engineered...
Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called m...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
Researchers at ETH Zurich, Empa and the Norwegian research institute SINTEF are pursuing a new approach to treating arthritis. This is based on a polysaccharide, a long-c...