Research

NREL increases hydrogen production from algae

February 11, 2014
AlgaeIndustryMagazine.com

National Renewable Energy Laboratory in Golden, Colorado

National Renewable Energy Laboratory in Golden, Colorado

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The finding suggests ways to increase the production of hydrogen by algae, which could help turn hydrogen into a viable alternative fuel for transportation.

Using sunlight and water to produce potential transportation fuels such as hydrogen is considered a promising solution in the quest for developing clean, abundant, domestic alternatives to petroleum.

NREL Scientist Alexandra Dubini

NREL Scientist Alexandra Dubini

A paper on the discovery, “Identification of global ferredoxin interaction networks in in Chlamydomonas reinhardtii,” appears online in The Journal of Biological Chemistry. The authors note that Chlamydomonas reinhardtii contains six chloroplast-localized ferredoxins (the iron-sulfur-containing redox mediators) whose exact functions are still unclear. C. reinhardtii often serves as a model for other algae strains because its genome is sequenced and it is amenable to genetic modification.

By analyzing the interacting partners and reactions catalyzed by each of the six ferredoxins (FDX), they found that FDX1 serves as the primary electron donor to hydrogen production via photosynthesis. FDX2 can do the job, but at less than half the rate, while FDX3 through FDX6 appear to play no role in this particular reaction.

In technical terms, the NREL scientists deconvoluted the complex network of redox reactions centered in the six iron-sulfur-containing algal ferredoxins. By revealing that only two of them promote electron transfer to and from hydrogenases, they helped extend the understanding of electron competition at the level of the ferredoxin.

“When we tested all the ferredoxins as electron donors, the best rate was obtained with FDX1,” said NREL Scientist Alexandra Dubini, one of the authors for the paper. Lead authors are Erin Peden and Marko Boem, with contributions from NREL colleagues David Mulder, ReAnna Davis, William Old, Paul King, Maria Ghirardi and Dubini.

The discovery could lead to ways to stem the flow of electrons to the other pathways, forcing more electrons through the FDX1 pathway for increased hydrogen production, Dubini said. “There is this competition for photosynthetic reductant among different pathways and ferredoxins distribute electrons among the various other pathways, depending on the conditions and requirements of the cell.”

Recent papers on the same green alga species indicate that it is possible to genetically eliminate certain competitive electron-utilizing pathways, and that directing more electrons instead towards the cell’s hydrogenase does increase hydrogen production. In an industrial setting, green algal mutant strains optimized for hydrogen gas production would be cultivated in a sealed bioreactor and the hydrogen gas produced would be collected and stored for use in fuel cells.

Dubini said that day could be a long way off, noting that so far this is just fundamental science. “But by exploring all the different barriers to hydrogen production we are gaining a much better understanding of the functions of the ferredoxins and their involvement in hydrogen production – and that is very exciting,” she added.

The work was supported by DOE’s Office of Science.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
In a global scenario where increasing attention is being directed towards issues of sustainability and limited food supplies, algal sources offer immense scope for the ra...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
Although the use of whole microalgae in animal diets has long been studied, the 
de-fatted biomass of microalgal species, derived from biofuel production research, has on...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Algae manufacturer Cyanotech Corporation has announced implementing three major initiatives to improve Astaxanthin production at their Kailua Kona, Hawaii-based cultivati...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Matthew Carr was recently named executive director of the Algae Biomass Organization (ABO), the leading trade association for the algae industry. His presence will soon b...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
Portuguese cement facility, Secil, and microalgae biotechnology company, A4F, also based in Portugal, have formed AlgaFarm, a joint venture to develop the use of cement f...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
Algix, parent company of Solaplast, will be inaugurating their algae-to-plastic facility in Meridian, Mississippi, on November 14, 2014. Solaplast's facility will be focu...