Research

NREL increases hydrogen production from algae

February 11, 2014
AlgaeIndustryMagazine.com

National Renewable Energy Laboratory in Golden, Colorado

National Renewable Energy Laboratory in Golden, Colorado

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The finding suggests ways to increase the production of hydrogen by algae, which could help turn hydrogen into a viable alternative fuel for transportation.

Using sunlight and water to produce potential transportation fuels such as hydrogen is considered a promising solution in the quest for developing clean, abundant, domestic alternatives to petroleum.

NREL Scientist Alexandra Dubini

NREL Scientist Alexandra Dubini

A paper on the discovery, “Identification of global ferredoxin interaction networks in in Chlamydomonas reinhardtii,” appears online in The Journal of Biological Chemistry. The authors note that Chlamydomonas reinhardtii contains six chloroplast-localized ferredoxins (the iron-sulfur-containing redox mediators) whose exact functions are still unclear. C. reinhardtii often serves as a model for other algae strains because its genome is sequenced and it is amenable to genetic modification.

By analyzing the interacting partners and reactions catalyzed by each of the six ferredoxins (FDX), they found that FDX1 serves as the primary electron donor to hydrogen production via photosynthesis. FDX2 can do the job, but at less than half the rate, while FDX3 through FDX6 appear to play no role in this particular reaction.

In technical terms, the NREL scientists deconvoluted the complex network of redox reactions centered in the six iron-sulfur-containing algal ferredoxins. By revealing that only two of them promote electron transfer to and from hydrogenases, they helped extend the understanding of electron competition at the level of the ferredoxin.

“When we tested all the ferredoxins as electron donors, the best rate was obtained with FDX1,” said NREL Scientist Alexandra Dubini, one of the authors for the paper. Lead authors are Erin Peden and Marko Boem, with contributions from NREL colleagues David Mulder, ReAnna Davis, William Old, Paul King, Maria Ghirardi and Dubini.

The discovery could lead to ways to stem the flow of electrons to the other pathways, forcing more electrons through the FDX1 pathway for increased hydrogen production, Dubini said. “There is this competition for photosynthetic reductant among different pathways and ferredoxins distribute electrons among the various other pathways, depending on the conditions and requirements of the cell.”

Recent papers on the same green alga species indicate that it is possible to genetically eliminate certain competitive electron-utilizing pathways, and that directing more electrons instead towards the cell’s hydrogenase does increase hydrogen production. In an industrial setting, green algal mutant strains optimized for hydrogen gas production would be cultivated in a sealed bioreactor and the hydrogen gas produced would be collected and stored for use in fuel cells.

Dubini said that day could be a long way off, noting that so far this is just fundamental science. “But by exploring all the different barriers to hydrogen production we are gaining a much better understanding of the functions of the ferredoxins and their involvement in hydrogen production – and that is very exciting,” she added.

The work was supported by DOE’s Office of Science.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
AIMPLAS, a Center for Innovation and Technology in Valencia, Spain, and Biofuel Systems, a wholly Spanish-owned firm that has developed a method of breeding plankton and ...
Alltech, the animal feed giant headquartered in Lexington, Kentucky, is continuing to expand its 15,000 ton/yr. algal DHA plant in Winchester, KY, one of only two plants ...
In the 1970s, following the regrouping of small farms into large production centers, the Soviet Union was experiencing serious problems with epidemics of cancer and low p...
Peter Berlin reports for France24.com that French adventurer Raphaël Dinelli plans to fly across the Atlantic in 2015 in a plane powered only by algae and sunshine. Dinel...
Natural Algae Astaxanthin manufacturers Fuji Chemical Industry Co Ltd., Algatechnologies Ltd. and Cyanotech Corporation have announced that they will form the “Natural Al...
OriginOil Inc. has announced a collaboration with Israel’s AquaGreen Fish Farms, Ltd. to further streamline their zero-discharge aquaculture systems for the production of...
Solazyme has announced that commercial operations have begun at both Archer Daniels Midland Company (ADM)’s Clinton, Iowa facility, and the downstream companion facility ...
Heliae, SCHOTT North America and Arizona State University (ASU) have announced a partnership to bring Heliae’s algae production technology to ASU’s algae testbed facility...
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
Biomass abounds on Earth, as forests, fields, sewage and seaweed. But only a small fraction, mostly human or agricultural waste, can be harvested without posing environme...
Algae.Tec Ltd has received its first purchase order from Reliance Industrial Investments and Holdings Limited (RIIHL), in connection with the arrangements announced on Ja...
In a global scenario where increasing attention is being directed towards issues of sustainability and limited food supplies, algal sources offer immense scope for the ra...
Solazyme, Inc. has announced results for the fourth quarter and full year ended December 31, 2013. “2013 was a year of great progress for Solazyme as we readied our first...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
Algatechnologies (“Algatech”), Israel, has announced a more than 100% expansion of its production capacity of AstaPure® brand natural astaxanthin. This doubling of capaci...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
Algae is being discussed at the heart of EXPO Milano 2015, the international event that has existed since 1851, spawning world shaping themes and icons, such as the Eiffe...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...