Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Process

New process for microalgal separation by shape

September 12, 2017
AlgaeIndustryMagazine.com

The new filter system shows microalgae being sorted by shape. Click image to enlarge.

Researchers from UCLA and the University of Tokyo have demonstrated a new capability to sort microalgae cells by their shape, creating a baseline of uniform cells for a large range of research, industrial and clinical applications. While traditional microalgal separation methods are based on porous filters or sedimentation in which cells settle due to gravity, this is the first shape-based separation that has been made possible. The research was published in Nature Scientific Reports.

Euglena gracilis (E. gracilis), a single-celled eukaryotic microalga, has been proposed as one of the most attractive microalgal species for biodiesel and biomass production. Like many algae, E. gracilis exhibits a number of shapes, ranging from nearly spherical to elongated cylinders. Shape is an important biomarker, serving as an indicator of biological clock status, photosynthetic and respiratory capacity, cell-cycle phase, and environmental conditions.

The ability to obtain cell populations with synchronized shape has significant implications for applications in biological research and industrial processes where cell populations with uniform properties are desired. It is envisioned that this platform, integrating with metabolic and genetic engineering technologies, can be used as a powerful tool to develop enhanced E. gracilis cells as well as other microalgal species with desirable properties, such as rapid growth rate and high lipid content.

The researchers developed a continuous flow “inertial microfluidic” technique to filter E. gracilis by a key shape parameter-cell aspect ratio. The researchers found that due to the momentum of the fluid flowing around the algae, cells migrated differentially when flowed through a precisely-shaped channel and the distance to the channel centerline decreased with increasing cell aspect ratio, the ratio of the cell’s length to width. E. gracilis cells that migrated differentially based on their shape were finally directed to different outlets based on their unique location in the channel.

The research team included Ming Li, a UCLA bioengineering postdoctoral scholar; Hector Enrique Muñoz, a UCLA bioengineering graduate student; Keisuke Goda, a professor of chemistry at University of Tokyo; and Dino Di Carlo, a professor of bioengineering at UCLA.

The research was supported by the ImPACT program, a R&D program led by the Council of Science, Technology and Innovation (Cabinet office, Government of Japan), and the Japan Science and Technology Agency (JST).  The University of Tokyo also published a news release on the paper.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
The GNT Group, a market leader in using algae as natural ingredients for color, has begun construction of an additional spirulina plant at its headquarters in Mierlo, the...
If we built a Green Friendship Bridge composed of 8,600 algae microfarms given to Mexican and Central American farmers in lieu of 1%, (13 miles) of additional border wall...
Bioenergy-news.com reports that Volkswagen showcased its algae biogas-powered vehicle at a biogas project based in El Torno Chiclana, a town in south-west Spain. The test...
Tyler Treadway of TCPalm reports on technology joining the fight in response to the Florida algae blooms. He watches, as water from a boat basin topped with several inche...
EPA (eicosapentaenoic acid) fortified eggs are developing quite a demand among middle and upper-class consumers in China. With clinical trials demonstrating that EPA can ...
Algae Health Sciences, Inc., a subsidiary of BGG, has announced that it has submitted a New Dietary Ingredient (NDI) to the US FDA for its flagship product AstaZine® Natu...
Kailua-Kona, Hawaii-based Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and Living Ink Technologies of Den...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
Qualitas Health, an algae-based health and nutrition company headquartered in Texas, has announced a long term, strategic partnership with commercial crop producer Green ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
Researchers at ETH Zurich, Empa and the Norwegian research institute SINTEF are pursuing a new approach to treating arthritis. This is based on a polysaccharide, a long-c...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...