Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Process

New process for microalgal separation by shape

September 12, 2017
AlgaeIndustryMagazine.com

The new filter system shows microalgae being sorted by shape. Click image to enlarge.

Researchers from UCLA and the University of Tokyo have demonstrated a new capability to sort microalgae cells by their shape, creating a baseline of uniform cells for a large range of research, industrial and clinical applications. While traditional microalgal separation methods are based on porous filters or sedimentation in which cells settle due to gravity, this is the first shape-based separation that has been made possible. The research was published in Nature Scientific Reports.

Euglena gracilis (E. gracilis), a single-celled eukaryotic microalga, has been proposed as one of the most attractive microalgal species for biodiesel and biomass production. Like many algae, E. gracilis exhibits a number of shapes, ranging from nearly spherical to elongated cylinders. Shape is an important biomarker, serving as an indicator of biological clock status, photosynthetic and respiratory capacity, cell-cycle phase, and environmental conditions.

The ability to obtain cell populations with synchronized shape has significant implications for applications in biological research and industrial processes where cell populations with uniform properties are desired. It is envisioned that this platform, integrating with metabolic and genetic engineering technologies, can be used as a powerful tool to develop enhanced E. gracilis cells as well as other microalgal species with desirable properties, such as rapid growth rate and high lipid content.

The researchers developed a continuous flow “inertial microfluidic” technique to filter E. gracilis by a key shape parameter-cell aspect ratio. The researchers found that due to the momentum of the fluid flowing around the algae, cells migrated differentially when flowed through a precisely-shaped channel and the distance to the channel centerline decreased with increasing cell aspect ratio, the ratio of the cell’s length to width. E. gracilis cells that migrated differentially based on their shape were finally directed to different outlets based on their unique location in the channel.

The research team included Ming Li, a UCLA bioengineering postdoctoral scholar; Hector Enrique Muñoz, a UCLA bioengineering graduate student; Keisuke Goda, a professor of chemistry at University of Tokyo; and Dino Di Carlo, a professor of bioengineering at UCLA.

The research was supported by the ImPACT program, a R&D program led by the Council of Science, Technology and Innovation (Cabinet office, Government of Japan), and the Japan Science and Technology Agency (JST).  The University of Tokyo also published a news release on the paper.

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
David Erickson writes in the (Montana) Missoulian that Clearas Water Recovery, a Missoula tech company formed eight years ago, has developed a patented process to use alg...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
Ali Morris writes in dezeen.com that Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely rep...
The recently signed US two-year budget deal – featuring bipartisan support for a $35 per ton tax incentive for carbon captured and recycled from power plants or industria...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
“The Israeli food-tech industry has been growing in leaps and bounds in recent years and is taking a leading role worldwide with a broad range of innovative companies and...
Researchers at Los Alamos National Laboratory and partner institutions have provided the first published report of algae using raw plants as a carbon energy source. The r...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...