Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Process

New process for microalgal separation by shape

September 12, 2017
AlgaeIndustryMagazine.com

The new filter system shows microalgae being sorted by shape. Click image to enlarge.

Researchers from UCLA and the University of Tokyo have demonstrated a new capability to sort microalgae cells by their shape, creating a baseline of uniform cells for a large range of research, industrial and clinical applications. While traditional microalgal separation methods are based on porous filters or sedimentation in which cells settle due to gravity, this is the first shape-based separation that has been made possible. The research was published in Nature Scientific Reports.

Euglena gracilis (E. gracilis), a single-celled eukaryotic microalga, has been proposed as one of the most attractive microalgal species for biodiesel and biomass production. Like many algae, E. gracilis exhibits a number of shapes, ranging from nearly spherical to elongated cylinders. Shape is an important biomarker, serving as an indicator of biological clock status, photosynthetic and respiratory capacity, cell-cycle phase, and environmental conditions.

The ability to obtain cell populations with synchronized shape has significant implications for applications in biological research and industrial processes where cell populations with uniform properties are desired. It is envisioned that this platform, integrating with metabolic and genetic engineering technologies, can be used as a powerful tool to develop enhanced E. gracilis cells as well as other microalgal species with desirable properties, such as rapid growth rate and high lipid content.

The researchers developed a continuous flow “inertial microfluidic” technique to filter E. gracilis by a key shape parameter-cell aspect ratio. The researchers found that due to the momentum of the fluid flowing around the algae, cells migrated differentially when flowed through a precisely-shaped channel and the distance to the channel centerline decreased with increasing cell aspect ratio, the ratio of the cell’s length to width. E. gracilis cells that migrated differentially based on their shape were finally directed to different outlets based on their unique location in the channel.

The research team included Ming Li, a UCLA bioengineering postdoctoral scholar; Hector Enrique Muñoz, a UCLA bioengineering graduate student; Keisuke Goda, a professor of chemistry at University of Tokyo; and Dino Di Carlo, a professor of bioengineering at UCLA.

The research was supported by the ImPACT program, a R&D program led by the Council of Science, Technology and Innovation (Cabinet office, Government of Japan), and the Japan Science and Technology Agency (JST).  The University of Tokyo also published a news release on the paper.

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
“The Israeli food-tech industry has been growing in leaps and bounds in recent years and is taking a leading role worldwide with a broad range of innovative companies and...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
Global EcoPower (GEP), of Aix-en-Provence, France, has signed a 5-year partnership contract with the French Alternative Energies and Atomic Energy Commission (CEA). This ...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Researchers at Los Alamos National Laboratory and partner institutions have provided the first published report of algae using raw plants as a carbon energy source. The r...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
Environmental Technology magazine notes that the difficulty in predicting how algae blooms will develop lies in their variform nature. With a multitude of different bloom...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...