[ad#PhycoBiosciences AIM Interview]

Scale Up

OMEGA San Francisco

NASA’s OMEGA Program at a Crossroads

September 5, 2012, by Jonathan Trent

Biofuels are my passion, but they have had rather bad press, from complaints about displacing food production to the inefficiency of soybeans and the carbon footprint of ethanol. Microalgae have a low profile but they deserve a much higher one, since the fossil oil we mine mostly comes from microalgae that lived in shallow seas millions of years ago – and they may be key to developing sustainable alternative fuels.

But there are big unsolved problems at which governments should be throwing funds and brainpower as if we were involved in a Manhattan project. For example, since few species of microalgae have been domesticated, we don’t know how to grow them reproducibly or economically. At what scale will algae farming be efficient?

Luckily, there may be a good way to cultivate algae while solving the ethical problem of producing biofuel, and without competing with agriculture. Freshwater algae can be grown in wastewater (effectively, water with fertilizer), or marine algae can be grown in a blend of seawater and wastewater. In both cases, wastewater provides a growth medium and the algae clean the wastewater by removing nutrients and pollutants from it. So there’s no competition for fresh water needed elsewhere, no reliance on synthetic fertilizer, and the environment benefits.

The United Nations estimates that the world produces around 1,500 cubic kilometers of wastewater annually, of which more than 80 percent is untreated. This means there is an ample supply of nutrient-rich water for the algae, while algae treatment is available to offset the environmental impact of wastewater.

“Now, with funds running out and NASA keen to spin off OMEGA, we need the right half-hectare site for a scaled-up demonstration.”

There remains the question of how and where to grow the algae. Raceways are relatively inexpensive, but need flat land, have lower yields than PBRs and problems with contamination and water loss from evaporation. PBRs have no problems with contamination or evaporation, but algae need light, and where there is light, there is heat: A sealed PBR may cook, rather than grow, algae. And mixing, circulating, and cleaning problems can send costs sky high.

Assuming we can fix these issues, the question of siting remains. In order not to compete with agriculture, algae cultivation must use non-arable land reasonably close to a wastewater treatment plant. But in most cities, wastewater plants are surrounded by infrastructure, so cultivation around the plants would affect roads, buildings, and bridges—again driving up costs prohibitively.

Enter the OMEGA Solution

A solution occurred to me: For coastal cities, we should try a system I call OMEGA: Offshore Membrane Enclosures for Growing Algae. Some 40 to 60 percent of Earth’s population lives near a coast, most of the biggest cities are near a coast, and nearly all coastal cities discharge wastewater offshore.

OMEGA uses PBRs made from cheap, flexible plastic tubes floating offshore, and filled with wastewater, to grow freshwater, oil-producing algae. It would be easier to build the systems in protected bays, but breakwaters could also be constructed to control waves and strong currents. The water need not be deep or navigable, but a few things are crucial, including temperature, light, water clarity, frequency and severity of storms, boat traffic, nature and wildlife conservation.

OMEGA System

Illustration of OMEGA’s implementation at San Francisco’s wastewater treatment plant

Beyond solving the problem of proximity to wastewater plants, there are other advantages to being offshore. OMEGA uses buoyancy, which can be easily manipulated, to move the system up and down, influencing exposure to surface waves and adjusting light levels. And the overheating problem is eliminated by the heat capacity of the surrounding seawater.

The salt gradient between seawater and wastewater can also be exploited to drive forward osmosis. Using a semipermeable membrane, which allows water, but not salt, pollutants, or algae to pass through, wastewater is drawn into the saltwater with no added energy. In the process, algae are concentrated in preparation for harvesting and the wastewater is cleaned, first by the algae, and then by forward osmosis. This produces water clean enough to release into the marine environment or recover for reuse.

If OMEGA’s freshwater algae are accidently released, they die in seawater, so no invasive species can escape into the ecosystem. In fact, OMEGA can improve conditions by providing a large surface for seaweed and invertebrates to colonize: part floating reef, part floating wetland. Then there are the extra possibilities of developing wind or wave power and aquaculture, growing food such as mussels.

Flash to the Present

OK, if it’s so good, where is it? For the past two years, backed by NASA and the California Energy Commission, and about $11 million, we have crawled over every aspect of OMEGA. In Santa Cruz, Calif., we built and tested small-scale PBRs in seawater tanks. We studied OMEGA processing wastewater in San Francisco, and we investigated biofouling and the impact on marine life at the Moss Landing Marine Laboratories in Monterey Bay.

“We could be on the threshold of a crucial transition in human history – from hunting and gathering our energy to growing it sustainably.”

I’m now pretty confident we can deal with the biological, engineering, and environmental issues. So will it fly economically? Of the options we tested, the OMEGA system combined with renewable energy sources – wind, solar, and wave technologies – and aquaculture looks most promising.

Now, with funds running out and NASA keen to spin off OMEGA, we need the right half-hectare site for a scaled-up demonstration. While there is enthusiasm and great potential sites in places ranging from Saudi Arabia to New Zealand, Australia to Norway, Guantanamo Bay to South Korea, as yet no one has committed to the first ocean deployment.

We could be on the threshold of a crucial transition in human history—from hunting and gathering our energy to growing it sustainably. But that means getting serious about every option, from alpha to OMEGA.

Read more in New Scientist.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
A new $1 million relationship between Michigan State University and ExxonMobil will expand research in the fundamental science to advance algae-based fuels. Dr. David Kra...
Glass tubing manufacturer SCHOTT, and Algatechnologies Ltd. (Algatech), a commercial algae producer and one of the largest manufacturers of natural astaxanthin, have part...
The Chesapeake Bay Seed Capital Fund, located in College Park, Maryland, has invested $150,000 into Manta Biofuel LLC, a company that produces crude oil from algae at a c...
The Technical University of Munich (TUM) has built a one-of-a-kind technical facility for algae cultivation at the Ludwig Bölkow Campus in Ottobrunn, to the south of Muni...
Hannah Osborne writes in the International Business Times that algae has been genetically engineered to kill cancer cells without harming healthy cells. The algae nanopar...
Bloomberg reports that ANA Holdings Inc., Japan’s largest airline, plans to use a Euglena Co. biofuel made from algae. ANA will use a mix of about 10 percent of the algae...
Algae producers moving from pilot to commercial applications require quick adaptation to algae harvesting capacity of hundreds and even thousands of cubic meters per day....
Students of algal research, including it's various applications and business models, have increasing opportunities to get quickly up to speed in many aspects of the rapid...
I’m an aquanaut teen. I was born in immersion in 2050 in an underwater farm called “Aequorea” off the coast of Rio de Janeiro. Bio-inspired, the farm draws its name from ...
Algae.Tec has announced that it has completed the commissioning and initial startup of an algae production plant to produce algae-based nutraceutical products. The plant ...
Nevele, Belgium-based TomAlgae is developing freeze-dried microalgae for feed in shrimp hatcheries. The company has created its own microalgal “cultivar” and manufactures...
Abigail Klein Leichman writes in ISRAEL21c that, in the rush to research algae-based technologies, Israel – as a startup nation itself – is at the forefront of much of th...