Scale Up


OMEGA San Francisco

NASA’s OMEGA Program at a Crossroads

September 5, 2012, by Jonathan Trent
AlgaeIndustryMagazine.com

Biofuels are my passion, but they have had rather bad press, from complaints about displacing food production to the inefficiency of soybeans and the carbon footprint of ethanol. Microalgae have a low profile but they deserve a much higher one, since the fossil oil we mine mostly comes from microalgae that lived in shallow seas millions of years ago – and they may be key to developing sustainable alternative fuels.

But there are big unsolved problems at which governments should be throwing funds and brainpower as if we were involved in a Manhattan project. For example, since few species of microalgae have been domesticated, we don’t know how to grow them reproducibly or economically. At what scale will algae farming be efficient?

Luckily, there may be a good way to cultivate algae while solving the ethical problem of producing biofuel, and without competing with agriculture. Freshwater algae can be grown in wastewater (effectively, water with fertilizer), or marine algae can be grown in a blend of seawater and wastewater. In both cases, wastewater provides a growth medium and the algae clean the wastewater by removing nutrients and pollutants from it. So there’s no competition for fresh water needed elsewhere, no reliance on synthetic fertilizer, and the environment benefits.

The United Nations estimates that the world produces around 1,500 cubic kilometers of wastewater annually, of which more than 80 percent is untreated. This means there is an ample supply of nutrient-rich water for the algae, while algae treatment is available to offset the environmental impact of wastewater.

“Now, with funds running out and NASA keen to spin off OMEGA, we need the right half-hectare site for a scaled-up demonstration.”

There remains the question of how and where to grow the algae. Raceways are relatively inexpensive, but need flat land, have lower yields than PBRs and problems with contamination and water loss from evaporation. PBRs have no problems with contamination or evaporation, but algae need light, and where there is light, there is heat: A sealed PBR may cook, rather than grow, algae. And mixing, circulating, and cleaning problems can send costs sky high.

Assuming we can fix these issues, the question of siting remains. In order not to compete with agriculture, algae cultivation must use non-arable land reasonably close to a wastewater treatment plant. But in most cities, wastewater plants are surrounded by infrastructure, so cultivation around the plants would affect roads, buildings, and bridges—again driving up costs prohibitively.

Enter the OMEGA Solution

A solution occurred to me: For coastal cities, we should try a system I call OMEGA: Offshore Membrane Enclosures for Growing Algae. Some 40 to 60 percent of Earth’s population lives near a coast, most of the biggest cities are near a coast, and nearly all coastal cities discharge wastewater offshore.

OMEGA uses PBRs made from cheap, flexible plastic tubes floating offshore, and filled with wastewater, to grow freshwater, oil-producing algae. It would be easier to build the systems in protected bays, but breakwaters could also be constructed to control waves and strong currents. The water need not be deep or navigable, but a few things are crucial, including temperature, light, water clarity, frequency and severity of storms, boat traffic, nature and wildlife conservation.

OMEGA System

Illustration of OMEGA’s implementation at San Francisco’s wastewater treatment plant

Beyond solving the problem of proximity to wastewater plants, there are other advantages to being offshore. OMEGA uses buoyancy, which can be easily manipulated, to move the system up and down, influencing exposure to surface waves and adjusting light levels. And the overheating problem is eliminated by the heat capacity of the surrounding seawater.

The salt gradient between seawater and wastewater can also be exploited to drive forward osmosis. Using a semipermeable membrane, which allows water, but not salt, pollutants, or algae to pass through, wastewater is drawn into the saltwater with no added energy. In the process, algae are concentrated in preparation for harvesting and the wastewater is cleaned, first by the algae, and then by forward osmosis. This produces water clean enough to release into the marine environment or recover for reuse.

If OMEGA’s freshwater algae are accidently released, they die in seawater, so no invasive species can escape into the ecosystem. In fact, OMEGA can improve conditions by providing a large surface for seaweed and invertebrates to colonize: part floating reef, part floating wetland. Then there are the extra possibilities of developing wind or wave power and aquaculture, growing food such as mussels.

Flash to the Present

OK, if it’s so good, where is it? For the past two years, backed by NASA and the California Energy Commission, and about $11 million, we have crawled over every aspect of OMEGA. In Santa Cruz, Calif., we built and tested small-scale PBRs in seawater tanks. We studied OMEGA processing wastewater in San Francisco, and we investigated biofouling and the impact on marine life at the Moss Landing Marine Laboratories in Monterey Bay.

“We could be on the threshold of a crucial transition in human history – from hunting and gathering our energy to growing it sustainably.”

I’m now pretty confident we can deal with the biological, engineering, and environmental issues. So will it fly economically? Of the options we tested, the OMEGA system combined with renewable energy sources – wind, solar, and wave technologies – and aquaculture looks most promising.

Now, with funds running out and NASA keen to spin off OMEGA, we need the right half-hectare site for a scaled-up demonstration. While there is enthusiasm and great potential sites in places ranging from Saudi Arabia to New Zealand, Australia to Norway, Guantanamo Bay to South Korea, as yet no one has committed to the first ocean deployment.

We could be on the threshold of a crucial transition in human history—from hunting and gathering our energy to growing it sustainably. But that means getting serious about every option, from alpha to OMEGA.

Read more in New Scientist.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
A University of New South Wales (UNSW)-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird qua...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
Algae manufacturer Cyanotech Corporation has announced implementing three major initiatives to improve Astaxanthin production at their Kailua Kona, Hawaii-based cultivati...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Channelnewsasia.com reports on three young Spaniards who harvest seaweed, a culinary delicacy, as a way for them to stay out of Spain’s troubled financial waters. 35-year...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...
MicroBio Engineering, Inc., of San Luis Obispo, California, has introduced a full suite of open pond microalgae growth systems designed for quick deployment of research- ...
Hortidaily.com reports that in Nevele, Belgium, Tomalgae is growing algae in a former tomato greenhouse. Their company was formed when tomato cultivation entrepreneurs Pi...
Iran-based Qeshm Microalgae Biorefinery Co. (QMAB) has launched a biofuel being marketed as BAYA®, produced from a species of Nannochloropsis (strain 6016) isolated from ...
William Tucker writes in fullfreedom.org about the lure the oceans have for advocates of biofuel, particularly in Scandinavia. “Two-thirds of the globe is covered with wa...