Research

MSU researching high alkaline algae

January 3, 2013
AlgaeIndustryMagazine.com

Montana State University professor Robin Gerlach looks at a vial containing organisms collected from a highly alkaline spring in Yellowstone National Park. MSU Photo by Kelly Gorham.

Montana State University professor Robin Gerlach looks at a vial containing organisms collected from a highly alkaline spring in Yellowstone National Park. MSU Photo by Kelly Gorham.

Montana State University professor Robin Gerlach coordinates research into the production of oil-producing algae, as well as studies the feasibility of commercial-scale biofuel production based on microbes discovered in Yellowstone National Park. Part of a multi-institutional project funded by a grant through the Sustainable Energy Pathways program at the National Science Foundation, it is one of many algal biofuel research projects in the labs of MSU professors Keith Cooksey, Matthew Fields, Brent Peyton and Gerlach.

The project, which also includes the University of North Carolina and the University of Toledo, is part of a federal effort to tackle some of the fundamental problems in developing enough biofuels fuels to provide up to 50 percent of the nation’s transportation fuel. The U.S. Department of Energy is funding the project.

Greg Characklis, UNC environmental engineer is building computer models to test the economic feasibility of producing algal biofuels on a commercial scale. Photo by Donn Young.

Greg Characklis, UNC environmental engineer is building computer models to test the economic feasibility of producing algal biofuels on a commercial scale. Photo by Donn Young.

“The project takes the groundbreaking work MSU scientists have done on algal biofuels and begins to integrate some of the bigger questions about what this promising technology will look like if it is going to become a major source of sustainable energy,” Gerlach said.

One promising line of research involves alkalinity-loving microbes from Yellowstone’s hot springs, as well as from Washington’s Soap Lake. Soap is highly alkaline.

Key to the success of algal biofuels is getting the algae to produce lots of oil that can be converted into biodiesel and other fuels. To produce lots of lipid, algae have to consume a lot of carbon – in this case, bicarbonate, as found in baking soda.

Typically, people think algae consume carbon dioxide but, under alkaline conditions, most of the inorganic carbon in the water is in the form of bicarbonate. “In these highly alkaline environments, that carbon becomes soluble in water and it can be used,” said Gerlach, whose research team includes post-doctoral students, graduate students and undergraduates.

“The oils produced by these high alkalinity algae could also be turned into other products, such as nutritional supplements,” said Gerlach. “Thriving in a highly alkaline environment lessens the contamination that can complicate efforts to extract commercially viable oils.”

The work at the University of North Carolina is taking a holistic look at the future of algal biofuels. That portion of the project is being conducted by Gregory Characklis, who grew up in Bozeman and is the son of the late Bill Characklis, the MSU professor who founded the Center for Biofilm Engineering.

Characklis, a professor in UNC’s Department of Environmental Sciences and Engineering, is compiling data to build computer models that will test the economic feasibility of producing algal biofuels on a commercial scale, while also assessing some of the environmental impacts of the production process.

“It’s not to say that there aren’t challenges associated with algal biofuels. But when we look closely at a system we’d need to scale up to the level of providing 50 percent of the nation’s transportation fuels, there seem to be fewer fatal flaws than those associated with many other biofuels,” Characklis said.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Heliae, SCHOTT North America and Arizona State University (ASU) have announced a partnership to bring Heliae’s algae production technology to ASU’s algae testbed facility...
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
Algatechnologies (“Algatech”), Israel, has announced a more than 100% expansion of its production capacity of AstaPure® brand natural astaxanthin. This doubling of capaci...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
“Proterro has reached its Q1 sugar-production pilot milestones,” CEO Kef Kasdin reported at the recent Advanced Biofuels Leadership Conference, in Washington, D.C. “In fo...
Yereth Rosen reports in the Anchorage Daily News that scientists at North Carolina State University’s Plants for Human Health Institute have found extremely high levels o...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
The Guardian reports that Prince Edward Island (P.E.I.), Canada-based Solarvest has created an inventive system utilizing a specific algal strain to grow and produce EPA ...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...