Research

MSU researching high alkaline algae

January 3, 2013
AlgaeIndustryMagazine.com

Montana State University professor Robin Gerlach looks at a vial containing organisms collected from a highly alkaline spring in Yellowstone National Park. MSU Photo by Kelly Gorham.

Montana State University professor Robin Gerlach looks at a vial containing organisms collected from a highly alkaline spring in Yellowstone National Park. MSU Photo by Kelly Gorham.

Montana State University professor Robin Gerlach coordinates research into the production of oil-producing algae, as well as studies the feasibility of commercial-scale biofuel production based on microbes discovered in Yellowstone National Park. Part of a multi-institutional project funded by a grant through the Sustainable Energy Pathways program at the National Science Foundation, it is one of many algal biofuel research projects in the labs of MSU professors Keith Cooksey, Matthew Fields, Brent Peyton and Gerlach.

The project, which also includes the University of North Carolina and the University of Toledo, is part of a federal effort to tackle some of the fundamental problems in developing enough biofuels fuels to provide up to 50 percent of the nation’s transportation fuel. The U.S. Department of Energy is funding the project.

Greg Characklis, UNC environmental engineer is building computer models to test the economic feasibility of producing algal biofuels on a commercial scale. Photo by Donn Young.

Greg Characklis, UNC environmental engineer is building computer models to test the economic feasibility of producing algal biofuels on a commercial scale. Photo by Donn Young.

“The project takes the groundbreaking work MSU scientists have done on algal biofuels and begins to integrate some of the bigger questions about what this promising technology will look like if it is going to become a major source of sustainable energy,” Gerlach said.

One promising line of research involves alkalinity-loving microbes from Yellowstone’s hot springs, as well as from Washington’s Soap Lake. Soap is highly alkaline.

Key to the success of algal biofuels is getting the algae to produce lots of oil that can be converted into biodiesel and other fuels. To produce lots of lipid, algae have to consume a lot of carbon – in this case, bicarbonate, as found in baking soda.

Typically, people think algae consume carbon dioxide but, under alkaline conditions, most of the inorganic carbon in the water is in the form of bicarbonate. “In these highly alkaline environments, that carbon becomes soluble in water and it can be used,” said Gerlach, whose research team includes post-doctoral students, graduate students and undergraduates.

“The oils produced by these high alkalinity algae could also be turned into other products, such as nutritional supplements,” said Gerlach. “Thriving in a highly alkaline environment lessens the contamination that can complicate efforts to extract commercially viable oils.”

The work at the University of North Carolina is taking a holistic look at the future of algal biofuels. That portion of the project is being conducted by Gregory Characklis, who grew up in Bozeman and is the son of the late Bill Characklis, the MSU professor who founded the Center for Biofilm Engineering.

Characklis, a professor in UNC’s Department of Environmental Sciences and Engineering, is compiling data to build computer models that will test the economic feasibility of producing algal biofuels on a commercial scale, while also assessing some of the environmental impacts of the production process.

“It’s not to say that there aren’t challenges associated with algal biofuels. But when we look closely at a system we’d need to scale up to the level of providing 50 percent of the nation’s transportation fuels, there seem to be fewer fatal flaws than those associated with many other biofuels,” Characklis said.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Heliae, SCHOTT North America and Arizona State University (ASU) have announced a partnership to bring Heliae’s algae production technology to ASU’s algae testbed facility...
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
Biomass abounds on Earth, as forests, fields, sewage and seaweed. But only a small fraction, mostly human or agricultural waste, can be harvested without posing environme...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
“Proterro has reached its Q1 sugar-production pilot milestones,” CEO Kef Kasdin reported at the recent Advanced Biofuels Leadership Conference, in Washington, D.C. “In fo...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
A University of New South Wales (UNSW)-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird qua...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Matthew Carr was recently named executive director of the Algae Biomass Organization (ABO), the leading trade association for the algae industry. His presence will soon b...
Bookending the upcoming Algae Biomass Summit, Sept. 29-Oct.2 in San Diego, will be industry tours to give attendees a first-hand look at the latest progress in technical ...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...
Analia Murias 
reports for fis.com that Chilean exports of products made from macroalgae generated a total of $195 million US in the first seven months of 2014, according...
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
Algix, parent company of Solaplast, will be inaugurating their algae-to-plastic facility in Meridian, Mississippi, on November 14, 2014. Solaplast's facility will be focu...