Research

MSU researchers boost oil in leaves with genes from algae

February 28, 2013
AlgaeIndustryMagazine.com

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

Michigan State University researchers have successfully employed an algal gene involved in oil production to engineer a plant that stores lipids in its leaves, a development they feel could enhance biofuel production as well as lead to improved animal feeds. The results were published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists.

Christoph Benning, MSU professor of biochemistry and molecular biology, led this collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. “Many researchers are trying to enhance plants’ energy density, and this is another way of approaching it,” Benning said. “It’s a proof-of-concept that could be used to boost plants’ oil production for biofuel use as well as improve the nutrition levels of animal feed.”

Benning and his colleagues began by identifying five genes from single-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant’s leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said. “If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double,” he said. “Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops.”

“These basic research findings are significant in advancing the engineering of oil-producing plants,” said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. “They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops.”

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
The European (FP7) algae project Sustainable PoLymers from Algae Sugars and Hydrocarbons (SPLASH) has been developing a platform technology for the conversion of third ge...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Scientists from the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization in La Jolla, California, have published a paper outlining new synthet...
Rich McEachran writes in the Guardian that, in the process of surfacing a road, layers of asphalt – which is composed mostly of bitumen (a byproduct of crude oil distilla...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
In Japan, the Algae Biomass Energy System Development Research Center, headed by Professor Makoto Watanabe, was established at the University of Tsukuba on July 1. The ne...
Algiran, an Iranian algal biotech company, has recently established a pilot scale algal cultivation demonstration facility at the Chabahar Free Zone, in the Baluchistan P...
Nurit Canetti writes in Israeli Pulse that Rwandan agronomists are on a one-year visit to Israel to study various aspects of Israeli agriculture firsthand. Primarily they...
You know algae are a great food source for you. But what are the best ways to eat it? Jami Foss writes in shape.com about 10 ways to eat algae that are common, healthy an...
Melissae Fellet reports in Chemical & Engineering News that new materials containing ultraviolet-absorbing molecules found in algae and reef-fish mucus could serve as...