Research

MSU researchers boost oil in leaves with genes from algae

February 28, 2013
AlgaeIndustryMagazine.com

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

Michigan State University researchers have successfully employed an algal gene involved in oil production to engineer a plant that stores lipids in its leaves, a development they feel could enhance biofuel production as well as lead to improved animal feeds. The results were published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists.

Christoph Benning, MSU professor of biochemistry and molecular biology, led this collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. “Many researchers are trying to enhance plants’ energy density, and this is another way of approaching it,” Benning said. “It’s a proof-of-concept that could be used to boost plants’ oil production for biofuel use as well as improve the nutrition levels of animal feed.”

Benning and his colleagues began by identifying five genes from single-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant’s leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said. “If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double,” he said. “Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops.”

“These basic research findings are significant in advancing the engineering of oil-producing plants,” said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. “They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops.”

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
Solazyme, Inc. has announced results for the fourth quarter and full year ended December 31, 2013. “2013 was a year of great progress for Solazyme as we readied our first...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
Yereth Rosen reports in the Anchorage Daily News that scientists at North Carolina State University’s Plants for Human Health Institute have found extremely high levels o...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
In an effort to propel the algae industry forward, the Algae Testbed Public Private Partnership (ATP3) offers a series of hands-on specialized workshops suited for partic...
Bookending the upcoming Algae Biomass Summit, Sept. 29-Oct.2 in San Diego, will be industry tours to give attendees a first-hand look at the latest progress in technical ...
The EPA has released the Annual Use of Pesticides in the U.S. Report. We now know that American farmers apply roughly a billion pounds of toxic chemicals intentionally in...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
Analia Murias 
reports for fis.com that Chilean exports of products made from macroalgae generated a total of $195 million US in the first seven months of 2014, according...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...