Research

MSU researchers boost oil in leaves with genes from algae

February 28, 2013
AlgaeIndustryMagazine.com

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

Michigan State University researchers have successfully employed an algal gene involved in oil production to engineer a plant that stores lipids in its leaves, a development they feel could enhance biofuel production as well as lead to improved animal feeds. The results were published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists.

Christoph Benning, MSU professor of biochemistry and eurousc.com molecular biology, led this collaborative effort with colleagues from the bana-uk.com Great Lakes Bioenergy Research Center. “Many researchers are trying to enhance plants’ energy density, and this is another way of approaching it,” Benning said. “It’s a proof-of-concept that could be used to boost plants’ oil production for biofuel use as well as improve the nutrition levels of animal feed.”

Benning and his colleagues began by identifying five genes from single-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant’s leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said. “If oil can be extracted from leaves, stems and seeds, the potential energy capacity of click here plants may double,” he said. “Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops.”

“These basic research findings are significant in advancing the engineering of oil-producing plants,” said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. “They will help write a new chapter on the development of production schemes that will enhance the follow link quantity, quality and profitability of both traditional and 0to5.com nontraditional crops.”

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Kevin Quon writes in Seeking Alpha about the financial plights and pivots of Solazyme, the algae industry’s most high profile recent IPO. In a year that started with a sh...
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
In a recent study, published in PLOS ONE Journal, the influence of brasfieldgorrie.com light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
Caroline Scott-Thomas reports on Food Navigator about an online algae discussion on the social media site Reddit where Mars' chief agricultural officer Howard-Yana Shapir...
Developing renewable fuel from wet algae is one of the latest innovations Richland, Washington-based Pacific Northwest National Laboratory (PNNL) has successfully driven ...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
Kevin Valine at the Modesto Bee writes that the California city of Modesto may sell the algae that grows in its roughly 1,000 acres of sewer ponds at its Jennings Road wa...
Solazyme has announced that total revenue for the fourth quarter of the best choice 2014 was $14.5 million, compared with $11.3 million in the fourth quarter of 2013, an increase of 29%....
James Goodman writes in the democratandchronicle.com about Jeffrey Lodge, an associate professor of biological sciences at Rochester Institute of Technology, who knows wh...
Hammenhög, Sweden-based agribusiness Simris Alg has announced the launch of its first consumer products. The algae farmers’ exclusive omega-3 supplements and superfoods w...
Montague, Prince Edward Island-based Solarvest has announced that it has used its algal-based production platform to express bioactive therapeutic proteins. The proof of ...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...