[ad#PhycoBiosciences AIM Interview]

Research

MSU researchers boost oil in leaves with genes from algae

February 28, 2013
AlgaeIndustryMagazine.com

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

In the MSU research, caterpillar larvae that were fed oily leaves from plants engineered with algal genes gained more weight than worms that ate regular leaves.

Michigan State University researchers have successfully employed an algal gene involved in oil production to engineer a plant that stores lipids in its leaves, a development they feel could enhance biofuel production as well as lead to improved animal feeds. The results were published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists.

Christoph Benning, MSU professor of biochemistry and molecular biology, led this collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. “Many researchers are trying to enhance plants’ energy density, and this is another way of approaching it,” Benning said. “It’s a proof-of-concept that could be used to boost plants’ oil production for biofuel use as well as improve the nutrition levels of animal feed.”

Benning and his colleagues began by identifying five genes from single-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant’s leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said. “If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double,” he said. “Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops.”

“These basic research findings are significant in advancing the engineering of oil-producing plants,” said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. “They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops.”

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
Tyler Treadway of TCPalm reports on technology joining the fight in response to the Florida algae blooms. He watches, as water from a boat basin topped with several inche...
Tom Lindfors writes in the New Richmond News about how the Roberts, Wisconsin, wastewater treatment plant – considered a minor utility designed to treat an average flow o...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has moved to the next stage in development of new production technologies to grow Nannochloropsis oce...
Joy Lanzendorfer reports for NPR that, as seaweed continues to gain popularity for its nutritional benefits and culinary versatility, more people are taking up seaweed fo...
The University of Kentucky (UK) Center for Applied Energy Research’s (CAER) Biofuels and Environmental Catalysis Group has received a $1.2 million U.S. Department of Ener...
Sarah Karacs reports for @CNNTech that Japanese firm Euglena has been cultivating a type of algae for use in food and cosmetics. But it sees a range of other potential us...
Suzanne Michaels, writes for the Las Cruces Sun-News that big implications are resulting from what looks like a small algae research project using the City’s wastewater. ...
The genome of the fuel-producing green microalga Botryococcus braunii has been sequenced by a team of researchers led by a group at Texas A&M AgriLife Research. The r...
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...