Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Process

Lipid-extracted microalgal biomass waste for biogas

January 10, 2018 — by Dr. Liandong Zhu
AlgaeIndustryMagazine.com

Microalgae contain substantial amounts of lipids (2–46%), carbohydrates (8–64%) including cellulose and starch, proteins (6–71%), fats and many other valuable compounds. The current obstacle for microalgal biodiesel development lies in its economics, because until now there has been no commercial large-scale production.

There are two main reasons: the microalgal biodiesel production process is chemical and energy intensive; and a high portion of microalgal biomass remains as residuals after biodiesel production. It is reported that microalgal waste after lipid extraction occupy around 65% of the microalgal biomass. Therefore, from the perspectives of both microalgal waste management and biodiesel economics improvement, it is necessary to find appropriate uses for the residue.

Biogas production from microalgal residues is thought of as an environmentally sound way to achieve sustainable and profitable microalgal biodiesel generation. The lipid-extracted microalgal residue typically represents energy and resources that are lost during the biodiesel production. Therefore, it is essential to recover the energetic and nutrient resources locked in microalgal residue.

Based on the microalgal composition, a technological pathway for the integration of biodiesel and biomethane production is proposed. Neutral lipids (mainly triacylglycerol) from microalgal biomass are the efficient ingredients for the conversion of biodiesel, while other types of lipids (e.g., chlorophyll, phospholipid, glycolipid, etc.) together with carbohydrates (starch and cellulose), proteins and fats can be used to produce biomethane via anaerobic digestion.

The digestate rich in mineralized organic N and P can be either recirculated into the microalgal production system as the nutrient source or sold as fertilizers. CO2 emitted during the biomethane production can also be supplied for microalgal production. Thus, the integrated production of biodiesel and biomethane, and the recirculation of nutrients and CO2, may result in an improvement to the energy balance and economic viability of the process.

Although it is promising to perform the anaerobic digestion of lipid-extracted algal residue, further research is required to investigate the optimization of the anaerobic digestion of algal biomass residues resulting from the process of biodiesel production.

Read More

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
“The Israeli food-tech industry has been growing in leaps and bounds in recent years and is taking a leading role worldwide with a broad range of innovative companies and...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...
JapanNews.com reports that Euglena Co., a Tokyo-based maker of nutritional supplements, is spending ¥5.8 billion ($5.3 million USD) on building a test refinery that conve...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
Researchers at Los Alamos National Laboratory and partner institutions have provided the first published report of algae using raw plants as a carbon energy source. The r...
Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind ...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
Jason Huffman writes in UndercurrentNews.com that the Kampachi Company, a mariculture business focused on expanding the environmentally sound production of sashimi-grade ...