[ad#The Buzz Sponsor Ad]

“Light Switch” in Cyanobacteria Discovered

July 24, 2012
AlgaeIndustryMagazine.com

Cyanobacteria displaying a green fluorescent tag.

Cyanobacteria displaying a green fluorescent tag. Image: Queen Mary, University of London.

Deanna Conners reports in earthsky.org that a collaboration of scientists from Queen Mary, University of London, the Imperial College London and the University College London have discovered a biological switch in blue-green algae that reacts to light and changes how electrons are transported within the cells. Their results were published on July 10, 2012 in Proceedings of the National Academy of Sciences. These findings, the researchers suggest, could help optimize biofuel production by algae.

Lack of light is often a major constraint in non-heterotrophic algae biofuel production systems because algae need light to photosynthesize. Attempts to increase the amount of light delivered to algae in bioreactors typically involve the use of energy-demanding mixing systems or smaller and more expensive growth chambers. Alternatively, scientists could try to improve the way that algae grow under low light conditions. But first, they need to more fully understand how the biological molecules within cells respond to light.

To examine how cyanobacterial cells respond to light, scientists in this study attached a green fluorescent protein tag to two key respiratory complexes in the species Synechococcus elongatus. Then they exposed the cyanobacterial cells to either low light or moderate light conditions in the laboratory and tracked changes in the cells.

The researchers discovered that brighter light caused the respiratory complexes to redistribute throughout the cells from discrete patches into more evenly distributed locations. The result was a greater probability that electrons would be transported to photosystem I, an integral component of the photosynthetic complex in the algae cell.

The scientists are trying to determine what controls these circuits, what makes electrons take a specific route, and what switches are available to send electrons to other destinations. According to Conrad Mullineaux, microbiology professor at Queen Mary, University of London and co-author of the paper, findings from the study could be exploited in engineering algae for improved biofuel production.

Read More

More Buzz…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
A new $1 million relationship between Michigan State University and ExxonMobil will expand research in the fundamental science to advance algae-based fuels. Dr. David Kra...
Tel Aviv, Israel-based UniVerve Ltd. has begun scaling-up its technological process for algae cultivation. The oil, which can be extracted with off-the-shelf wet extracti...
The Technical University of Munich (TUM) has built a one-of-a-kind technical facility for algae cultivation at the Ludwig Bölkow Campus in Ottobrunn, to the south of Muni...
The Symbiosis Center in Denmark is exploring the industrial potential of microalgae, reports EUobserver's Regional Focus magazine. Using CO2 and light to produce valuable...
Hannah Osborne writes in the International Business Times that algae has been genetically engineered to kill cancer cells without harming healthy cells. The algae nanopar...
The U.S. Department of Energy (DOE) has awarded Arizona State University (ASU) a three-year, $1 million grant to fund the Atmospheric Carbon Dioxide Capture and Membrane ...
Bloomberg reports that ANA Holdings Inc., Japan’s largest airline, plans to use a Euglena Co. biofuel made from algae. ANA will use a mix of about 10 percent of the algae...
While researchers have long suspected that climate change will lead to stronger and more frequent algal blooms, a new fusion of climate models and watershed models has pr...
Students of algal research, including it's various applications and business models, have increasing opportunities to get quickly up to speed in many aspects of the rapid...
I’m an aquanaut teen. I was born in immersion in 2050 in an underwater farm called “Aequorea” off the coast of Rio de Janeiro. Bio-inspired, the farm draws its name from ...
The new algae raceway testing facility, opening February 4 at Sandia National Laboratories in Livermore, California, paves a direct path between laboratory research and s...
Abigail Klein Leichman writes in ISRAEL21c that, in the rush to research algae-based technologies, Israel – as a startup nation itself – is at the forefront of much of th...