[ad#The Buzz Sponsor Ad]

“Light Switch” in Cyanobacteria Discovered

July 24, 2012
AlgaeIndustryMagazine.com

Cyanobacteria displaying a green fluorescent tag.

Cyanobacteria displaying a green fluorescent tag. Image: Queen Mary, University of London.

Deanna Conners reports in earthsky.org that a collaboration of scientists from Queen Mary, University of London, the Imperial College London and the University College London have discovered a biological switch in blue-green algae that reacts to light and changes how electrons are transported within the cells. Their results were published on July 10, 2012 in Proceedings of the National Academy of Sciences. These findings, the researchers suggest, could help optimize biofuel production by algae.

Lack of light is often a major constraint in non-heterotrophic algae biofuel production systems because algae need light to photosynthesize. Attempts to increase the amount of light delivered to algae in bioreactors typically involve the use of energy-demanding mixing systems or smaller and more expensive growth chambers. Alternatively, scientists could try to improve the way that algae grow under low light conditions. But first, they need to more fully understand how the biological molecules within cells respond to light.

To examine how cyanobacterial cells respond to light, scientists in this study attached a green fluorescent protein tag to two key respiratory complexes in the species Synechococcus elongatus. Then they exposed the cyanobacterial cells to either low light or moderate light conditions in the laboratory and tracked changes in the cells.

The researchers discovered that brighter light caused the respiratory complexes to redistribute throughout the cells from discrete patches into more evenly distributed locations. The result was a greater probability that electrons would be transported to photosystem I, an integral component of the photosynthetic complex in the algae cell.

The scientists are trying to determine what controls these circuits, what makes electrons take a specific route, and what switches are available to send electrons to other destinations. According to Conrad Mullineaux, microbiology professor at Queen Mary, University of London and co-author of the paper, findings from the study could be exploited in engineering algae for improved biofuel production.

Read More

More Buzz…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Iran-based Qeshm Microalgae Biorefinery Co. (QMAB) has launched a biofuel being marketed as BAYA®, produced from a species of Nannochloropsis (strain 6016) isolated from ...
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Nutritionaloutlook.com this month gives a well-rounded survey of how algae’s uses in food, beverage, and supplements keep expanding. Here is an excerpt: Thanks to the 201...
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Scientific representatives from the EnAlgae consortium are announcing preliminary results this week from a key algal carbon capture project in the works at Britain’s larg...
Rich McEachran writes in the Guardian that, in the process of surfacing a road, layers of asphalt – which is composed mostly of bitumen (a byproduct of crude oil distilla...
With large-scale production at low cost a future possibility, many corporations in Japan are beginning to jump on the algae fuel bandwagon. Heavy industry giant IHI Corp....
Michigan State University (MSU) and PHYCO2, an algae growth and CO2 sequestration company based in Santa Maria, CA, have entered into a partnership to develop algae techn...
Ewen Callaway writes in the jounal Nature that restrictions on harvests and exports of Gelidium seaweed in Morocco have affected the global supply of the lab reagent agar...
The Green Friendship Bridge series examines a simple question: “What makes better sense, extending the border wall with Mexico 1,300 miles or taking 13 miles of fence inv...
Kuo Chia-erh reports for Taipei Times that Taiwan Cement Corp, the nation’s leading cement supplier, has announced plans to expand its microalgae farm, which produces ast...