[ad#The Buzz Sponsor Ad]

“Light Switch” in Cyanobacteria Discovered

July 24, 2012
AlgaeIndustryMagazine.com

Cyanobacteria displaying a green fluorescent tag.

Cyanobacteria displaying a green fluorescent tag. Image: Queen Mary, University of London.

Deanna Conners reports in earthsky.org that a collaboration of scientists from Queen Mary, University of London, the Imperial College London and the University College London have discovered a biological switch in blue-green algae that reacts to light and changes how electrons are transported within the cells. Their results were published on July 10, 2012 in Proceedings of the National Academy of Sciences. These findings, the researchers suggest, could help optimize biofuel production by algae.

Lack of light is often a major constraint in non-heterotrophic algae biofuel production systems because algae need light to photosynthesize. Attempts to increase the amount of light delivered to algae in bioreactors typically involve the use of energy-demanding mixing systems or smaller and more expensive growth chambers. Alternatively, scientists could try to improve the way that algae grow under low light conditions. But first, they need to more fully understand how the biological molecules within cells respond to light.

To examine how cyanobacterial cells respond to light, scientists in this study attached a green fluorescent protein tag to two key respiratory complexes in the species Synechococcus elongatus. Then they exposed the cyanobacterial cells to either low light or moderate light conditions in the laboratory and tracked changes in the cells.

The researchers discovered that brighter light caused the respiratory complexes to redistribute throughout the cells from discrete patches into more evenly distributed locations. The result was a greater probability that electrons would be transported to photosystem I, an integral component of the photosynthetic complex in the algae cell.

The scientists are trying to determine what controls these circuits, what makes electrons take a specific route, and what switches are available to send electrons to other destinations. According to Conrad Mullineaux, microbiology professor at Queen Mary, University of London and co-author of the paper, findings from the study could be exploited in engineering algae for improved biofuel production.

Read More

More Buzz…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Earthrise Nutritionals, a wholly owned subsidiary of Tokyo, Japan’s DIC Corporation, is on schedule to complete construction in August, 2015, of a new extraction plant fo...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
Michigan State University (MSU) and PHYCO2, an algae growth and CO2 sequestration company based in Santa Maria, CA, have entered into a partnership to develop algae techn...
Large prefabricated raceway ponds have been a missing element in algae cultivation scale-up. Now 22-m2 to 101-m2 Algae Raceway™ ponds featuring patent pending APIAC™ tech...
Hannah Osborne writes in the International Business Times that algae has been genetically engineered to kill cancer cells without harming healthy cells. The algae nanopar...
Fiona Macrae writes for the London Independent that British scientists claim to have found a green alga that produces a sugar-like chemical to protect it from harm. When ...