[ad#The Buzz Sponsor Ad]

“Light Switch” in Cyanobacteria Discovered

July 24, 2012
AlgaeIndustryMagazine.com

Cyanobacteria displaying a green fluorescent tag.

Cyanobacteria displaying a green fluorescent tag. Image: Queen Mary, University of London.

Deanna Conners reports in earthsky.org that a collaboration of scientists from Queen Mary, University of London, the Imperial College London and the University College London have discovered a biological switch in blue-green algae that reacts to light and changes how electrons are transported within the cells. Their results were published on July 10, 2012 in Proceedings of the National Academy of Sciences. These findings, the researchers suggest, could help optimize biofuel production by algae.

Lack of light is often a major constraint in non-heterotrophic algae biofuel production systems because algae need light to photosynthesize. Attempts to increase the amount of light delivered to algae in bioreactors typically involve the use of energy-demanding mixing systems or smaller and more expensive growth chambers. Alternatively, scientists could try to improve the way that algae grow under low light conditions. But first, they need to more fully understand how the biological molecules within cells respond to light.

To examine how cyanobacterial cells respond to light, scientists in this study attached a green fluorescent protein tag to two key respiratory complexes in the species Synechococcus elongatus. Then they exposed the cyanobacterial cells to either low light or moderate light conditions in the laboratory and tracked changes in the cells.

The researchers discovered that brighter light caused the respiratory complexes to redistribute throughout the cells from discrete patches into more evenly distributed locations. The result was a greater probability that electrons would be transported to photosystem I, an integral component of the photosynthetic complex in the algae cell.

The scientists are trying to determine what controls these circuits, what makes electrons take a specific route, and what switches are available to send electrons to other destinations. According to Conrad Mullineaux, microbiology professor at Queen Mary, University of London and co-author of the paper, findings from the study could be exploited in engineering algae for improved biofuel production.

Read More

More Buzz…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...
Judy Siegel-Itzkovich writes in the Jerusalem Post that Dr. Iftach Yacoby and his research team at Tel Aviv University, in Israel, have genetically altered microalgae to ...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Kailua-Kona, Hawaii-based Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and Living Ink Technologies of Den...
For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for r...
Suzanne Michaels, writes for the Las Cruces Sun-News that big implications are resulting from what looks like a small algae research project using the City’s wastewater. ...
PhysOrg reports that recent efforts have been made by researchers in Japan to reduce the cost of biodiesel production by using pulsed electric fields (PEF) to extract hyd...
Diane Stopyra writes in Salon.com that a growing number of coastal states around the country are undertaking large-scale seaweed farming projects. While farms are underwa...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
Jeff Gelsky writes in Meat+Poultry that Corbion executives have given insights on how its September 29 acquisition of TerraVia Holdings Inc., an algae-based ingredients c...