Research

ISU Researchers Pair Genes to Up Photosynthetic Carbon Conversion

November 21, 2011
AlgaeIndustryMagazine.com

Iowa State University’s Martin Spalding

Iowa State University’s Martin Spalding is leading a team developing a genetic method to increase biomass in algae. Photo: Bob Elbert

Researchers at Iowa State University, in Ames, IA, are exploring the effects of controlling the expression of two algal genes that regulate the uptake of CO2 for photosynthesis. In the experiments performed under the direction of Martin Spalding, professor in the Department of Genetics, Development, and Cell Biology, the researchers noticed an increase in the algal biomass by 50 to 80 percent when these two genes were artificially expressed.

“The key to this (increase in biomass) is a combination of two genes that increase the photosynthetic carbon conversion into organic matter by 50 percent over the wild type under carbon dioxide enrichment conditions,” said Dr. Spalding.

In environments that have relatively low levels of CO2, two genes in algae—LCIA and LCIB—are expressed, or turned on, to help capture and then channel more carbon dioxide from the air into the cells to keep the algae alive and growing. However, when algae are in environments with high carbon dioxide levels, such as in soil near plant roots that are expiring carbon dioxide, the two relevant genes shut down because the plant is getting enough carbon dioxide.

“The process is similar to a car driving up a hill,” says Spalding. “The accelerator—these two genes—is pressed and the engine works hard to climb a hill. But when going down an incline, the driver often lets up on the accelerator since more gas isn’t needed—the genes shut down. The two genes are expressed—essentially keeping algae’s foot on the gas—even when they are in a carbon dioxide-rich environment and don’t need additional carbon dioxide.”

In experiments to get the algae type (Chlamydomonas reinhardtii) to produce more biomass, Spalding first expressed LCIA and LCIB separately. Each indicated a 10 to 15 percent increase in biomass. When the two genes were expressed together, researchers were surprised to see the 50 to 80 percent biomass increase. “Somehow these two genes are working together to increase the amount of carbon dioxide that’s converted through photosynthesis into biomass by the algae under conditions where you would expect there would already be enough carbon dioxide,” said Spalding.

This research was funded in part by grants from the Department of Agriculture’s National Institute of Food and Agriculture and the Department of Energy, Advanced Research Projects Agency—Energy.

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates! 

From The A.I.M. Archives

— Refresh Page for More Choices
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
Portuguese cement facility, Secil, and microalgae biotechnology company, A4F, also based in Portugal, have formed AlgaFarm, a joint venture to develop the use of cement f...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Analia Murias 
reports for fis.com that Chilean exports of products made from macroalgae generated a total of $195 million US in the first seven months of 2014, according...
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
Algix, parent company of Solaplast, will be inaugurating their algae-to-plastic facility in Meridian, Mississippi, on November 14, 2014. Solaplast's facility will be focu...
Renewable fuels company Muradel has launched Australia’s first integrated demonstration plant to sustainably convert algae into green crude, as a first step towards a com...
On September 25, 2014, a photobioreactor for the cultivation of algae was officially unveiled during a seminar at Thomas More University College in Mechelen, Belgium. Und...
In October 2014 an unusual AlgaePARC research paper entitled Design and construction of the microalgal pilot facility AlgaePARC was published in the Journal of Algal Rese...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
West Chester, Pennsylvania-based International Sustainability Group, Inc., an innovative green technology and sustainable manufacturing company, has entered the algae mar...
Developing renewable fuel from wet algae is one of the latest innovations Richland, Washington-based Pacific Northwest National Laboratory (PNNL) has successfully driven ...
Nutritionaloutlook.com this month gives a well-rounded survey of how algae’s uses in food, beverage, and supplements keep expanding. Here is an excerpt: Thanks to the 201...