go to http://www.aocs.org! Algaetech International — The Future is NowComplete Algae Monitoring System Visit  cricatalyst.com!Nexus — Leaders in Greenhouse Systems Integration

Research

ISU Researchers Pair Genes to Up Photosynthetic Carbon Conversion

November 21, 2011
AlgaeIndustryMagazine.com

Iowa State University’s Martin Spalding

Iowa State University’s Martin Spalding is leading a team developing a genetic method to increase biomass in algae. Photo: Bob Elbert

Researchers at Iowa State University, in Ames, IA, are exploring the effects of controlling the expression of two algal genes that regulate the uptake of CO2 for photosynthesis. In the experiments performed under the direction of Martin Spalding, professor in the Department of Genetics, Development, and Cell Biology, the researchers noticed an increase in the algal biomass by 50 to 80 percent when these two genes were artificially expressed.

“The key to this (increase in biomass) is a combination of two genes that increase the photosynthetic carbon conversion into organic matter by 50 percent over the wild type under carbon dioxide enrichment conditions,” said Dr. Spalding.

In environments that have relatively low levels of CO2, two genes in algae—LCIA and LCIB—are expressed, or turned on, to help capture and then channel more carbon dioxide from the air into the cells to keep the algae alive and growing. However, when algae are in environments with high carbon dioxide levels, such as in soil near plant roots that are expiring carbon dioxide, the two relevant genes shut down because the plant is getting enough carbon dioxide.

“The process is similar to a car driving up a hill,” says Spalding. “The accelerator—these two genes—is pressed and the engine works hard to climb a hill. But when going down an incline, the driver often lets up on the accelerator since more gas isn’t needed—the genes shut down. The two genes are expressed—essentially keeping algae’s foot on the gas—even when they are in a carbon dioxide-rich environment and don’t need additional carbon dioxide.”

In experiments to get the algae type (Chlamydomonas reinhardtii) to produce more biomass, Spalding first expressed LCIA and LCIB separately. Each indicated a 10 to 15 percent increase in biomass. When the two genes were expressed together, researchers were surprised to see the 50 to 80 percent biomass increase. “Somehow these two genes are working together to increase the amount of carbon dioxide that’s converted through photosynthesis into biomass by the algae under conditions where you would expect there would already be enough carbon dioxide,” said Spalding.

This research was funded in part by grants from the Department of Agriculture’s National Institute of Food and Agriculture and the Department of Energy, Advanced Research Projects Agency—Energy.

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates! 

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a represent...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
Biomass abounds on Earth, as forests, fields, sewage and seaweed. But only a small fraction, mostly human or agricultural waste, can be harvested without posing environme...
Algae.Tec Ltd has received its first purchase order from Reliance Industrial Investments and Holdings Limited (RIIHL), in connection with the arrangements announced on Ja...
In a global scenario where increasing attention is being directed towards issues of sustainability and limited food supplies, algal sources offer immense scope for the ra...
Solazyme, Inc. has announced results for the fourth quarter and full year ended December 31, 2013. “2013 was a year of great progress for Solazyme as we readied our first...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
The Algae Biomass Organization (ABO) released the following statement calling on the EPA to include Carbon Capture and Utilization strategies in rules proposed June 2, 20...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae manufacturer Cyanotech Corporation has announced implementing three major initiatives to improve Astaxanthin production at their Kailua Kona, Hawaii-based cultivati...