[ad#PhycoBiosciences AIM Interview]

Research

ISU Researchers Pair Genes to Up Photosynthetic Carbon Conversion

November 21, 2011
AlgaeIndustryMagazine.com

Iowa State University’s Martin Spalding

Iowa State University’s Martin Spalding is leading a team developing a genetic method to increase biomass in algae. Photo: Bob Elbert

Researchers at Iowa State University, in Ames, IA, are exploring the effects of controlling the expression of two algal genes that regulate the uptake of CO2 for photosynthesis. In the experiments performed under the direction of Martin Spalding, professor in the Department of Genetics, Development, and Cell Biology, the researchers noticed an increase in the algal biomass by 50 to 80 percent when these two genes were artificially expressed.

“The key to this (increase in biomass) is a combination of two genes that increase the photosynthetic carbon conversion into organic matter by 50 percent over the wild type under carbon dioxide enrichment conditions,” said Dr. Spalding.

In environments that have relatively low levels of CO2, two genes in algae—LCIA and LCIB—are expressed, or turned on, to help capture and then channel more carbon dioxide from the air into the cells to keep the algae alive and growing. However, when algae are in environments with high carbon dioxide levels, such as in soil near plant roots that are expiring carbon dioxide, the two relevant genes shut down because the plant is getting enough carbon dioxide.

“The process is similar to a car driving up a hill,” says Spalding. “The accelerator—these two genes—is pressed and the engine works hard to climb a hill. But when going down an incline, the driver often lets up on the accelerator since more gas isn’t needed—the genes shut down. The two genes are expressed—essentially keeping algae’s foot on the gas—even when they are in a carbon dioxide-rich environment and don’t need additional carbon dioxide.”

In experiments to get the algae type (Chlamydomonas reinhardtii) to produce more biomass, Spalding first expressed LCIA and LCIB separately. Each indicated a 10 to 15 percent increase in biomass. When the two genes were expressed together, researchers were surprised to see the 50 to 80 percent biomass increase. “Somehow these two genes are working together to increase the amount of carbon dioxide that’s converted through photosynthesis into biomass by the algae under conditions where you would expect there would already be enough carbon dioxide,” said Spalding.

This research was funded in part by grants from the Department of Agriculture’s National Institute of Food and Agriculture and the Department of Energy, Advanced Research Projects Agency—Energy.

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates! 

From The A.I.M. Archives

— Refresh Page for More Choices
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
SciDev.Net’s South Asia desk reports that Indian scientists working on producing biofuel from algae cultured in municipal wastewater are enthused by the findings of a rec...
The vision of developing a community college degree program to train a high technology algae workforce was launched at New Mexico's Santa Fe Community College (SFCC) in 2...
The Biotechnology Industry Organization (BIO) has named Solazyme CEO and co-founder Jonathan S. Wolfson as the recipient of its 2015 George Washington Carver Award for in...
John O’Renick, in this insightful piece from the Portland (Oregon) Tribune, writes about the problems we create from treating waste streams as garbage to be disposed of i...
DENSO Corporation, Toyota Motor Corp.’s largest supplier, has announced that it will build a large test facility to culture Pseudochoricystis ellipsoidea – an oil-produci...
Kailua Kona-based Cyanotech Corporation announced financial results for the third quarter and first nine months of fiscal year 2016, ended December 31, 2015. For the thir...
Researchers at Arizona State University (ASU) and engineers at Salt River Project (SRP), one of the nation's largest public power utilities, are conducting joint research...
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...