Research

ISU Researchers Pair Genes to Up Photosynthetic Carbon Conversion

November 21, 2011
AlgaeIndustryMagazine.com

Iowa State University’s Martin Spalding

Iowa State University’s Martin Spalding is leading a team developing a genetic method to increase biomass in algae. Photo: Bob Elbert

Researchers at Iowa State University, in Ames, IA, are exploring the effects of controlling the expression of two algal genes that regulate the uptake of CO2 for photosynthesis. In the experiments performed under the direction of Martin Spalding, professor in the Department of Genetics, Development, and Cell Biology, the researchers noticed an increase in the algal biomass by 50 to 80 percent when these two genes were artificially expressed.

“The key to this (increase in biomass) is a combination of two genes that increase the photosynthetic carbon conversion into organic matter by 50 percent over the wild type under carbon dioxide enrichment conditions,” said Dr. Spalding.

In environments that have relatively low levels of CO2, two genes in algae—LCIA and LCIB—are expressed, or turned on, to help capture and then channel more carbon dioxide from the air into the cells to keep the algae alive and growing. However, when algae are in environments with high carbon dioxide levels, such as in soil near plant roots that are expiring carbon dioxide, the two relevant genes shut down because the plant is getting enough carbon dioxide.

“The process is similar to a car driving up a hill,” says Spalding. “The accelerator—these two genes—is pressed and the engine works hard to climb a hill. But when going down an incline, the driver often lets up on the accelerator since more gas isn’t needed—the genes shut down. The two genes are expressed—essentially keeping algae’s foot on the gas—even when they are in a carbon dioxide-rich environment and don’t need additional carbon dioxide.”

In experiments to get the algae type (Chlamydomonas reinhardtii) to produce more biomass, Spalding first expressed LCIA and LCIB separately. Each indicated a 10 to 15 percent increase in biomass. When the two genes were expressed together, researchers were surprised to see the 50 to 80 percent biomass increase. “Somehow these two genes are working together to increase the amount of carbon dioxide that’s converted through photosynthesis into biomass by the algae under conditions where you would expect there would already be enough carbon dioxide,” said Spalding.

This research was funded in part by grants from the Department of Agriculture’s National Institute of Food and Agriculture and the Department of Energy, Advanced Research Projects Agency—Energy.

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates! 

From The A.I.M. Archives

— Refresh Page for More Choices
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
“Proterro has reached its Q1 sugar-production pilot milestones,” CEO Kef Kasdin reported at the recent Advanced Biofuels Leadership Conference, in Washington, D.C. “In fo...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
In Phys.Org, Yu Yonehara notes the breakthrough research from the Tokyo Institute of Technology on the connection between early marine algae and the development of terres...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
The Guardian reports that Prince Edward Island (P.E.I.), Canada-based Solarvest has created an inventive system utilizing a specific algal strain to grow and produce EPA ...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Following a request from the European Commission, the European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) was recently asked t...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
Bookending the upcoming Algae Biomass Summit, Sept. 29-Oct.2 in San Diego, will be industry tours to give attendees a first-hand look at the latest progress in technical ...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
A team of Michigan State University algae researchers have discovered a cellular "snooze button" that has the potential to improve biofuel production and offer ...
Algix, parent company of Solaplast, will be inaugurating their algae-to-plastic facility in Meridian, Mississippi, on November 14, 2014. Solaplast's facility will be focu...