Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Technology

Indiana U gets Duke Energy grant for algae project

November 21, 2017
AlgaeIndustryMagazine.com

The IU Bloomington project will be modeled after this photobioreactor system, located at Duke Energy’s East Bend Coal Power Plant and designed by the University of Kentucky’s Center for Applied Energy Research group. Photo courtesy of Center for Applied Energy Research

Bailey Briscoe writes from Bloomington, Indiana, that a $50,000 grant from Duke Energy will help make Indiana University Bloomington one of the first universities in the U.S. to convert emissions from its heating plant into fertilizer to feed campus vegetation.

To make this happen, a group composed of specialists from across the campus — including a faculty biologist, facility engineers and landscapers, and marketing and sustainability students — have designed a photobioreactor. Made of PVC pipes, the structure will be housed on the roof of IU Bloomington’s Central Heating Plant and will convert emissions from the smokestacks into fertilizer via photosynthesis.

Water vapor generated from the heating plant’s smokestacks will be condensed and pumped into the bioreactor tubes, which will house algae. Then, emissions from the heating plant containing carbon and nitrogen will bubble into the tubes to feed and suspend the algae. The transparent tubes allow sunlight to catalyze the photosynthesis process of the algae, creating a usable, sustainable, nutrient-rich fertilizer.

To start, the fertilizer will be used in the more than 200 flower beds across campus. “With all of its measureable and novel contributions, this project has the potential to be an iconic symbol of IU’s commitment to sustainability and education,” said Stephen “Chip” Glaholt, an adjunct faculty member and researcher in the School of Public and Environmental Affairs at IU Bloomington, and a co-leader on the project.

Also co-leading the project is Mark Menefee, the assistant director for utility services at IU Bloomington’s Central Heating Plant, who has been experimenting with similar projects for several years. SPEA students Darah Meister, Tucker Jaroll and Anna Groover also worked on different aspects of the project, including design and research. Students Maddie Corgiat, Nikhil Prasad, Bailey Kaplon and the late Megan Yoder of Net Impact, a sustainable business club in IU’s Kelley School of Business, coordinated marketing and fundraising efforts and were heavily involved in the process to apply for the Duke Energy Grant.

Funding of this project is in line with Duke Energy’s support of IU’s Prepared for Environmental Change Grand Challenge project.

“We’re dedicated to addressing the environmental needs of the communities where our customers live and work,” said Bruce Calloway, Duke Energy’s Bloomington community relations manager. “We’ve lowered our company’s carbon output by approximately 30 percent since 2005, and technology is key to solving these environmental challenges. This project betters the campus community while creating a living laboratory for IU students.”

“Planning for the photobioreactor system has already brought our students, faculty and staff together to make a tangible impact on our campus,” said Vice President for Capital Planning and Facilities Thomas A. Morrison. “With the assistance of Duke Energy, we now can continue to grow the physical beauty of our campus while studying and utilizing new processes that benefit our environment and reduce costs.”

Construction on the photobioreactor system is expected to begin in February, with completion slated for spring 2018. In its first year of implementation, the system is expected to return 200 pounds of carbon back to the earth, as well as save the university nearly $4,000 in fertilizing costs.

The grant funding from Duke Energy will be used to build the system on campus. Once built, nearly no costs will be associated with production of the fertilizer, aside from annual maintenance.

In addition to making campus more green, the project will serve as an educational opportunity for students. Several courses in SPEA and the College of Arts and Sciences’ Department of Biology will integrate studies of the photobioreactor and biofertilizer into their curriculum. Using the system as a living laboratory, students will research and monitor its function, collect data and expand its capabilities.

IU will be collaborating with the University of Kentucky’s Center for Applied Energy Research group on the design of this project, as they already have a similar system constructed at Duke Energy’s East Bend Coal Power Plant.

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Globally, an increase in water pollution is pushing scientists and environmental care specialists to seek best ways of preserving and maintaining sources of safe drinking...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...
Global EcoPower (GEP), of Aix-en-Provence, France, has signed a 5-year partnership contract with the French Alternative Energies and Atomic Energy Commission (CEA). This ...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...
Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind ...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
Jason Huffman writes in UndercurrentNews.com that the Kampachi Company, a mariculture business focused on expanding the environmentally sound production of sashimi-grade ...