Process

Increasing algae’s productivity via light regulation

November 7, 2013
AlgaeIndustryMagazine.com

Photomicrograph of cyanobacterial mat from a California salt marsh. (Wayne Lanier/UC Berkeley)

Photomicrograph of cyanobacterial mat from a California salt marsh. (Wayne Lanier/UC Berkeley)

A“proof of concept” experiment described in the upcoming Dec. 2 issue of the journal Current Biology has shown that growing algae in constant light can dramatically boost the amount of valuable compounds that they can produce. The study found that when the biological clocks of cyanobacteria (blue-green algae) were stopped in their daylight setting, the amount of several biomolecules that they were genetically altered to produce increased by as much as 700 percent.

“We have shown that manipulating cyanobacteria’s clock genes can increase its production of commercially valuable biomolecules,” said Carl Johnson, Stevenson Professor of Biological Sciences at Vanderbilt University, who performed the study with collaborators at the J. Craig Venter Institute in Rockville, MD and Waseda University in Tokyo. “In the last 10 years, we have figured out how to stop the circadian clocks in most species of algae and in many higher plants as well, so the technique should have widespread applicability.”

Professor Carl Johnson, of Vanderbilt University

Professor Carl Johnson, of Vanderbilt University

In 2004, Johnson was a member of the team that determined the molecular structure of a circadian clock protein for the first time. Subsequent work mapped the entire clock mechanism in cyanobacteria, which is the simplest bioclock found in nature. The researchers discovered that the clock consisted of three proteins: KaiA, KaiB and KaiC. Detailed knowledge of the clock’s structure allowed them to determine how to switch the clock on and off.

In the current study, the researchers discovered that two components of the clock, KaiA and KaiC, act as switches that turn the cell’s daytime and nighttime genes on and off. They have dubbed this “yin-yang” regulation. When KaiA is up-regulated (produced in larger amounts) and KaiC is down-regulated (produced in smaller amounts), the 95 percent of the cell’s genes that are active during daylight are turned on, and the 5 percent of the cell’s genes that operate during the night are turned off. However, when KaiC is up-regulated and KaiA is down-regulated, then the day genes are turned off and the night genes are turned on.

“As a result, all we have to do to lock the biological clock into its daylight configuration is to genetically up-regulate the expression of KaiA, which is a simple manipulation in the genetically malleable cyanobacteria,” Johnson said.

To see what effects this capability has on the bacteria’s ability to produce commercially important compounds, the researchers inserted a gene for human insulin in some of the cyanobacteria cells, a gene for a fluorescent protein (luciferase) in other cells and a gene for hydrogenase, an enzyme that produces hydrogen gas, in yet others. They found that the cells with the locked clocks produced 200 percent more hydrogenase, 500 percent more insulin and 700 percent more luciferase when grown in constant light than they did when the genes were inserted in cells with normally functioning clocks.

Coauthors of the study include Research Associate Professor Yao Xu, Postdoctoral Fellow Ximing Qin and Graduate Student Jing Xiong from Vanderbilt; Assistant Professor Philip Weyman and Group Leader Qing Xu from the J. Craig Venter Institute in Rockville, Md., and Graduate Student Miki Umetani and Professor Hideo Iwasaki at Waseda University in Tokyo.

The research was funded by National Institute of General Medical Sciences grants GM067152 and GM088595, Department of Energy grant DE-FG36-05GO15027, Japanese Society for the Promotion of Science grants 23657138 and 23687002, the Asahi Glass Foundation and the Yoshida Scholarship Foundation.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
“Proterro has reached its Q1 sugar-production pilot milestones,” CEO Kef Kasdin reported at the recent Advanced Biofuels Leadership Conference, in Washington, D.C. “In fo...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
The Algae Biomass Organization (ABO) released the following statement calling on the EPA to include Carbon Capture and Utilization strategies in rules proposed June 2, 20...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Steven Mufson reports for the Washington Post that Algenol Biofuels estimates hackers have attempted to break into its computers 39 million times in four months this year...
Using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death d...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
Renewable fuels company Muradel has launched Australia’s first integrated demonstration plant to sustainably convert algae into green crude, as a first step towards a com...