Process

Increasing algae’s productivity via light regulation

November 7, 2013
AlgaeIndustryMagazine.com

Photomicrograph of cyanobacterial mat from a California salt marsh. (Wayne Lanier/UC Berkeley)

Photomicrograph of cyanobacterial mat from a California salt marsh. (Wayne Lanier/UC Berkeley)

A“proof of concept” experiment described in the upcoming Dec. 2 issue of the journal Current Biology has shown that growing algae in constant light can dramatically boost the amount of valuable compounds that they can produce. The study found that when the biological clocks of cyanobacteria (blue-green algae) were stopped in their daylight setting, the amount of several biomolecules that they were genetically altered to produce increased by as much as 700 percent.

“We have shown that manipulating cyanobacteria’s clock genes can increase its production of commercially valuable biomolecules,” said Carl Johnson, Stevenson Professor of Biological Sciences at Vanderbilt University, who performed the study with collaborators at the J. Craig Venter Institute in Rockville, MD and Waseda University in Tokyo. “In the last 10 years, we have figured out how to stop the circadian clocks in most species of algae and in many higher plants as well, so the technique should have widespread applicability.”

Professor Carl Johnson, of Vanderbilt University

Professor Carl Johnson, of Vanderbilt University

In 2004, Johnson was a member of the team that determined the molecular structure of a circadian clock protein for the first time. Subsequent work mapped the entire clock mechanism in cyanobacteria, which is the simplest bioclock found in nature. The researchers discovered that the clock consisted of three proteins: KaiA, KaiB and KaiC. Detailed knowledge of the clock’s structure allowed them to determine how to switch the clock on and off.

In the current study, the researchers discovered that two components of the clock, KaiA and KaiC, act as switches that turn the cell’s daytime and nighttime genes on and off. They have dubbed this “yin-yang” regulation. When KaiA is up-regulated (produced in larger amounts) and KaiC is down-regulated (produced in smaller amounts), the 95 percent of the cell’s genes that are active during daylight are turned on, and the 5 percent of the cell’s genes that operate during the night are turned off. However, when KaiC is up-regulated and KaiA is down-regulated, then the day genes are turned off and the night genes are turned on.

“As a result, all we have to do to lock the biological clock into its daylight configuration is to genetically up-regulate the expression of KaiA, which is a simple manipulation in the genetically malleable cyanobacteria,” Johnson said.

To see what effects this capability has on the bacteria’s ability to produce commercially important compounds, the researchers inserted a gene for human insulin in some of the cyanobacteria cells, a gene for a fluorescent protein (luciferase) in other cells and a gene for hydrogenase, an enzyme that produces hydrogen gas, in yet others. They found that the cells with the locked clocks produced 200 percent more hydrogenase, 500 percent more insulin and 700 percent more luciferase when grown in constant light than they did when the genes were inserted in cells with normally functioning clocks.

Coauthors of the study include Research Associate Professor Yao Xu, Postdoctoral Fellow Ximing Qin and Graduate Student Jing Xiong from Vanderbilt; Assistant Professor Philip Weyman and Group Leader Qing Xu from the J. Craig Venter Institute in Rockville, Md., and Graduate Student Miki Umetani and Professor Hideo Iwasaki at Waseda University in Tokyo.

The research was funded by National Institute of General Medical Sciences grants GM067152 and GM088595, Department of Energy grant DE-FG36-05GO15027, Japanese Society for the Promotion of Science grants 23657138 and 23687002, the Asahi Glass Foundation and the Yoshida Scholarship Foundation.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Hammenhög, Sweden-based agribusiness Simris Alg has announced the launch of its first consumer products. The algae farmers’ exclusive omega-3 supplements and superfoods w...
Cellana, Inc., with operations in San Diego and Kailua-Kona, Hawaii, has announced that David Anton, Ph.D., has been appointed Chief Operating Officer and elected to the ...
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
The European (FP7) algae project Sustainable PoLymers from Algae Sugars and Hydrocarbons (SPLASH) has been developing a platform technology for the conversion of third ge...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
In one of the first studies to examine the potential for using municipal wastewater as a feedstock for algae-based biofuels, Rice University scientists found they could e...
Sami Zaatari writes for the Middle East’s Gulf News that Abu Dhabi’s coastal sabkhas – the Arabic phonetic translation for salt flats – hold great potential for solar pow...
Five years ago, on April 20, 2010, an explosion on the Deepwater Horizon rig caused a release of 200 million gallons of oil into the Gulf of Mexico before the well was ca...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Algae “red tide” events often create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteri...
SciDev.Net’s South Asia desk reports that Indian scientists working on producing biofuel from algae cultured in municipal wastewater are enthused by the findings of a rec...
The Biotechnology Industry Organization (BIO) has named Solazyme CEO and co-founder Jonathan S. Wolfson as the recipient of its 2015 George Washington Carver Award for in...
Using microalgae to capture CO2 is a complex process, especially in flue gas environments, reports an editorial by IEA Clean Coal Centre in worldcoal.com. There are many ...
Studies conducted by EnAlgae partners in Ireland, France and Belgium point the way to seaweed being a viable and sustainable feedstock for the future in North West Europe...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...