Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Identifying a cheaper, greener biofuel processing catalyst

August 27, 2017
AlgaeIndustryMagazine.com

A photomicrograph of the palladium and bacteria catalyst. Image courtesy Lynne Macaskie

Many biofuels are costly to produce because the precursor product, bio-oil, must be processed before it is sent to the refinery to be turned into liquid fuel. In search of bringing that cost down, University of Illinois’ Prairie Research Institute researcher B.K. Sharma and his co-authors have identified and tested a new processing method using a processing catalyst made from palladium metal and bacteria.

“Bio-oil forms from the same chemical reaction that forms petroleum,” Dr. Sharma said. “But what takes millions of years naturally in the ground takes only minutes in the lab using a process that is very similar to pressure cooking.”

Published in the journal Fuel, their findings point to a cheaper, more environmentally friendly and renewable catalyst for processing that uses common bacteria and the metal palladium, which can be recovered from waste sources such as discarded electronics, catalytic converters, street sweeper dust and processed sewage.

“The bio-oil produced in the lab from algae contains impurities like nitrogen and oxygen, but treating it with palladium as a catalyst during processing helps remove those impurities to meet clean-air requirements,” Dr. Sharma said.

“For the palladium to do its job, the bio-oil needs to flow past it during processing. Previous studies have shown that allowing the oil to flow through porous carbon particles infused with palladium is an effective method, but those carbon particles are not cheap,” he said. “Instead of using commercially produced carbon particles, we can use bacteria cell masses as a sort of biologic scaffolding for the palladium to hold on to. The oil can flow through the palladium-decorated bacteria masses as it does through the carbon particles.”

To test the effectiveness of the new method, Dr. Sharma and his co-authors performed a variety of chemical and physical analyses to determine if their new processing treatment produced a liquid fuel that is comparable in quality to one made using the commercially produced catalyst.

“We found our product to be as good or even slightly better,” Dr. Sharma said. “We were able to remove the oxygen and nitrogen impurities at a comparable rate, and yielded the same volume of product using our cheaper, greener catalyst as is observed using the more expensive commercial catalyst.”

Dr. BK Sharma of the Illinois Sustainable Technology Center led this study.

The more costly commercial catalyst has the added benefit that it can be used over and over without extensive processing, whereas the research group’s palladium-on-bacteria catalyst will need to undergo processing to be reused.

“It is a minor caveat,” Dr. Sharma said. “The fact that we have shown the potential of making refinery-ready crude oil from algae bio-oil using a catalyst that can be prepared from low-grade recycled metals and green and economical bacterial biomass proves that this is a very promising advancement. In addition, this bio-catalyst would work equally well in petrochemical processing.”

The work was conducted in collaboration with professors Joe Wood and Lynne Macaskie from the University of Birmingham, funded through the Birmingham-Illinois Partnership for Discovery, Engagement and Education program. The Natural Environment Research Council, UK also supported this research.

The paper “Nanoparticles of Pd supported on bacterial biomass for hydroprocessing crude bio-oil” is available online and from the U. of I. News Bureau. DOI: 10.1016/j.fuel.2017.08.007

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
San Francisco biotech startup New Wave Foods aims to address the impact of overfishing, bycatch, water pollution, slave labor, an animal death toll in the trillions, and ...
Nicolas Sainte-Foie writes for Labiotech.eu about French startup Algopack manufacturing bio-based plastics made from brown algae. Founded by Rémy Lucas in 2010 and manage...
Joy Lanzendorfer reports for NPR that, as seaweed continues to gain popularity for its nutritional benefits and culinary versatility, more people are taking up seaweed fo...
Sarah Karacs reports for @CNNTech that Japanese firm Euglena has been cultivating a type of algae for use in food and cosmetics. But it sees a range of other potential us...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
The genome of the fuel-producing green microalga Botryococcus braunii has been sequenced by a team of researchers led by a group at Texas A&M AgriLife Research. The r...
Algatech has announced the opening of Algatech Inc., a New York City-based subsidiary created to serve the North American market. The company has appointed Ken Seguine to...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
The United States Department of Energy (DOE) announced that the University of New England was awarded a three-year, nationally competitive research grant for $1,321,039 f...