Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

How single cell life forms evolved into multicellular organisms

February 4, 2018
AlgaeIndustryMagazine.com

Tetrabaena socialis

Brinkwire reports that PhD student, Jonathan Featherston, of the Evolution of Complexity Laboratory at the University of the Witwatersrand, Johannesburg, has answered at least part of this question, by decoding the genomic sequence of one of the simplest of all multicellular organisms — the four-celled alga Tetrabaena socialis. His research has been published in Molecular Biology and Evolution.

Tetrabaena is a member of a lineage of green-algae known as the volvocine lineage. The lineage is a model lineage for understanding how multicellularity evolved. By studying the genome of this simple alga, a number of genetic mechanisms that control how cells divide were associated with the origin of multicellularity.

By painstakingly piecing together the whole genome sequence for the alga over a period of over two years, using various genome-sequencing methodologies, Mr. Featherston has identified the ubiquitin proteasomal pathway (UPP) as a process that plays a key role in the evolution of multicellularity. This pathway is involved in regulating many activities in cells by targeting proteins for destruction thereby maintaining a careful balance of proteins in cells.

“The UPP has been implicated in many human cancers and even as a potential target for treating cancers. From this study it seems that alterations to this pathway were important for how multicellularity evolved in these algae,” says Mr. Featherston.

UPP is a complicated pathway that controls the cellular concentration of key proteins that drive cell division and it plays a role in many cellular functions. Mr. Featherston’s study suggests that UPP may play a role regulating how many divisions each species of volvocine undergoes through degradation of key molecules that control cell division.

“One of the earliest evolutionary adaptations in the volvocines was a modified cell cycle. The multicellular volvocines evolved a genetic program for controlling the number of divisions during reproduction where each species has a genetically programmed maximum number of divisions. Some will only divide twice during reproduction while others may divide 12 times,” he says. “Normally people look a lot at how much of a key regulatory molecule is produced by a cell but here the interest is in the pathway that destroys these molecules. It’s kind of the other side of how cellular processes are regulated.”

Mr. Featherston compared the genome sequence of multicellular algae to their nearest single celled relative, in order to establish the genetic differences associated with the evolution of multicellularity. While overall, the single celled and multicelled algae are very similar, he identified a small set of gene families (131) that were gained at the origin of multicellularity.

“We picked up some trends from this set of families. Many have developmental functions, which indicates that they probably are important for the evolution of multicellularity,” he says.

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
Since hydrogen fuel cells produce electricity, we are increasingly thinking about hydrogen as a successor to crude oil. But where will the hydrogen come from? Its ecologi...
Forbes is running an interview with Bren Smith, an Ashoka Fellow and the founder of GreenWave, an organization dedicated to restoring oceans, mitigating climate change an...
Nicolas Sainte-Foie writes for Labiotech.eu about French startup Algopack manufacturing bio-based plastics made from brown algae. Founded by Rémy Lucas in 2010 and manage...
Fraunhofer-Gesellschaft reports in Science Daily that two algae species survived 16 months on the exterior of the International Space Station (ISS) despite extreme temper...
Qualitas Health, an algae-based health and nutrition company headquartered in Texas, has announced a long term, strategic partnership with commercial crop producer Green ...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
Will Yeates reports in DailyPlanet.com that an urban “algae farm” producing low-carbon protein and bio-fuel is one of the highlights on show this week at the future energ...
The Department of Energy has just announced $22 million in funding through the Advanced Research Projects Agency-Energy (ARPA-E) for 18 innovative projects as part of the...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...