Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

How single cell life forms evolved into multicellular organisms

February 4, 2018
AlgaeIndustryMagazine.com

Tetrabaena socialis

Brinkwire reports that PhD student, Jonathan Featherston, of the Evolution of Complexity Laboratory at the University of the Witwatersrand, Johannesburg, has answered at least part of this question, by decoding the genomic sequence of one of the simplest of all multicellular organisms — the four-celled alga Tetrabaena socialis. His research has been published in Molecular Biology and Evolution.

Tetrabaena is a member of a lineage of green-algae known as the volvocine lineage. The lineage is a model lineage for understanding how multicellularity evolved. By studying the genome of this simple alga, a number of genetic mechanisms that control how cells divide were associated with the origin of multicellularity.

By painstakingly piecing together the whole genome sequence for the alga over a period of over two years, using various genome-sequencing methodologies, Mr. Featherston has identified the ubiquitin proteasomal pathway (UPP) as a process that plays a key role in the evolution of multicellularity. This pathway is involved in regulating many activities in cells by targeting proteins for destruction thereby maintaining a careful balance of proteins in cells.

“The UPP has been implicated in many human cancers and even as a potential target for treating cancers. From this study it seems that alterations to this pathway were important for how multicellularity evolved in these algae,” says Mr. Featherston.

UPP is a complicated pathway that controls the cellular concentration of key proteins that drive cell division and it plays a role in many cellular functions. Mr. Featherston’s study suggests that UPP may play a role regulating how many divisions each species of volvocine undergoes through degradation of key molecules that control cell division.

“One of the earliest evolutionary adaptations in the volvocines was a modified cell cycle. The multicellular volvocines evolved a genetic program for controlling the number of divisions during reproduction where each species has a genetically programmed maximum number of divisions. Some will only divide twice during reproduction while others may divide 12 times,” he says. “Normally people look a lot at how much of a key regulatory molecule is produced by a cell but here the interest is in the pathway that destroys these molecules. It’s kind of the other side of how cellular processes are regulated.”

Mr. Featherston compared the genome sequence of multicellular algae to their nearest single celled relative, in order to establish the genetic differences associated with the evolution of multicellularity. While overall, the single celled and multicelled algae are very similar, he identified a small set of gene families (131) that were gained at the origin of multicellularity.

“We picked up some trends from this set of families. Many have developmental functions, which indicates that they probably are important for the evolution of multicellularity,” he says.

Read More

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Global EcoPower (GEP), of Aix-en-Provence, France, has signed a 5-year partnership contract with the French Alternative Energies and Atomic Energy Commission (CEA). This ...
Researchers at Los Alamos National Laboratory and partner institutions have provided the first published report of algae using raw plants as a carbon energy source. The r...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind ...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...
Environmental Technology magazine notes that the difficulty in predicting how algae blooms will develop lies in their variform nature. With a multitude of different bloom...
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
Steve Fountain writes in fortstocktonpioneer.com that, amid the 800-page law that last month set the country’s farm policy through 2023, is the expansion of federal suppo...