The Buzz

German Researchers Decipher the Molecular Basis of Cyanobacteria

August 8, 2011
AlgaeIndustryMagazine.com

Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. By removing this switch, it should be possible to use the excess energy of the bacteria for biotechnological purposes such as hydrogen production, without the bacteria suffering.

This was found out by researchers at the Ruhr-Universität, in West Germany, led by Prof. Dr. Matthias Rögner (Faculty of Biology and Biotechnology, Biochemistry of Plants). Their results, which they obtained together with a Japanese research group from the Tokyo Institute of Technology, are published in the Journal of Biological Chemistry.

The energy-rich molecule ATP serves as a store for the energy gained through photosynthesis in plants. It is built up, and where necessary broken down again, by the enzyme ATPase. To guard the bacterium against stress situations with too much or too little light, the ATPase of the cyanobacteria has a small area that acts like a switch. It prevents the ATP from being broken down prematurely in the dark, when no photosynthesis takes place. The bacterium thus creates a store of energy that helps it through stress phases. However, this switch also slows the rate of photosynthetic electron transport with the water splitting in light. “Imagine it like wanting to squeeze something into a full storehouse against resistance,” says Dr. Rögner.

In the experiment, Dr. Rögner and his colleagues removed the switch area of the ATPase in cyanobacteria by means of genetic engineering. “Of course we expected that the bacteria would suffer much more afterwards and that they would become much slower,” he explains, “but that was not the case.”

The bacteria grew just as usual under laboratory conditions—without light stress. However, they create lower ATP energy reserves, so they can’t survive very long dark periods as well as the wild type. On the other hand, the excess energy in light, which otherwise went into the reserves, is now available for biotechnological use.

“This should make it possible to use at least 50% of the energy gained from light-driven water splitting for other processes in the future, for example solar-powered biological hydrogen production through cyanobacterial mass cultures in photobioreactors,” predicts Dr. Roegner.

For more information on this, contact: Prof. Dr. Matthias Rögner 0049-234-322-3634, Ruhr-University Bochum

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates!

From The A.I.M. Archives

— Refresh Page for More Choices
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...
Global EcoPower (GEP), of Aix-en-Provence, France, has signed a 5-year partnership contract with the French Alternative Energies and Atomic Energy Commission (CEA). This ...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
Algae and corals have been leaning on each other since dinosaurs roamed the earth, much longer than had been previously thought, according to new research led by scientis...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
Milenio.com reports that BiomiTech, a Mexican company, won a prestigious innovation award for its air purification system at the Contamination Expo Series 2018 held in Bi...
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
Mazda U.K. has announced that they are currently involved in joint research projects and studies as part of an ongoing industry-academia-government collaboration to promo...
Jessica D'Lima writes in AdvancedScienceNews.com that medicine is moving towards minimally invasive procedures, which have important patient-oriented benefits such as sho...