Research

Genome suggests why red alga didn’t come ashore

April 2, 2013
AlgaeIndustryMagazine.com

In the foreground, the red alga, Chondrus crispus  © Jonas Collén

In the foreground, the red alga, Chondrus crispus © Jonas Collén

The first red alga genome has recently been sequenced by an international team, coordinated in France by Le Centre National de la Recherche Scientifique (CNRS) and Pierre-and-Marie-Curie University (UPMC) at the Station Biologique de Roscoff, in Brittany. The project notably involved researchers from the French National Sequencing Centre: CEA-Genoscope, the universities of Lille and Rennes, and the Muséum National d’Histoire Naturelle.

The genome of Chondrus crispus, also known by the Breton name ‘pioka,’ turns out to be small and compact for a multicellular organism. It has fewer genes than several other species of unicellular algae, which raises a number of questions about the evolution of red algae. This low number of genes could explain why these organisms never colonized dry land, unlike their green counterparts – from which all terrestrial plants are descended.

These findings open up new perspectives on the natural history of algae and of terrestrial plants. They were published online in the journal PNAS on March 11, 2013.

Chondrus crispus is a multicellular red alga of about 20 cm in length. It is very common on the rocky coasts of the North Atlantic where it plays an essential role as a primary producer in these ecosystems. Certain red algae are now used in the agri-food industry for the thickening properties of the carrageenans from their cell walls. These sulfated polysaccharides correspond to the food additive E-407, which goes into many desserts and other dishes. Beyond industrial applications, this first sequencing of a red alga genome sheds new light on plant evolution as a whole.

A Chondrus crispus red alga ©Jonas Collén

A Chondrus crispus red alga ©Jonas Collén

The Chondrus genome had some surprises for the researchers. With only 9,606 genes and 105 million base pairs, it is very small for a multicellular organism. By comparison, the unicellular green alga Chlamydomonas reinhardtii has 14,516 genes, the multicellular terrestrial plant Arabadopsis thaliana has 27,416. The Chondrus genome is also very compact, with each function generally corresponding to a single gene. Gene families are small, and genes closely spaced.

To explain these surprising characteristics, the researchers proposed the hypothesis that, more than a billion years ago, red algae experienced a massive loss of genetic material as a result of extreme environmental conditions. This dramatic event in their evolutionary history would have had many consequences. One result could be the loss of flagellar genes, still present in most other organisms and responsible for the motility of certain cells (such as the gametes during sexual reproduction in most organisms, including humans).

Had this massive gene loss never occurred, red algae might have extensively colonized the terrestrial environment, in the same way as green algae, which are the ancestors of all land plants. Yet this event – a real evolutionary bottleneck –has denied red algae the plasticity and genetic potential necessary to adapt to life on land.

The sequence of the Chondrus genome opens the archives of more than 1,500 million years of evolutionary history of terrestrial and marine plants. It provides a new basis for the study of red algae biology and is the first step in a program aiming to improve our understanding of the origins of life on Earth, the adaptation of red algae to their environment and the biosynthesis pathways of biomolecules of interest, such as carrageenans. The scientists of the group are also hoping to discover new enzymes of interest for marine biotechnology.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a represent...
In a global scenario where increasing attention is being directed towards issues of sustainability and limited food supplies, algal sources offer immense scope for the ra...
Technical standards define critical terms and metrics to add wisdom for the algae industry. Agreement among science and business leaders represents possibly the most diff...
Algae is being discussed at the heart of EXPO Milano 2015, the international event that has existed since 1851, spawning world shaping themes and icons, such as the Eiffe...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
Yereth Rosen reports in the Anchorage Daily News that scientists at North Carolina State University’s Plants for Human Health Institute have found extremely high levels o...
A series of articles by Stephen Mayfield and the UCSD Laboratory deserve recognition for their articles on algae-based medicines for malaria and cancer. Mayfield and his ...
Algenist®, Solazyme’s anti-aging skincare brand featuring microalgae, has announced its launch in Nordstrom locations throughout the United States. The launch into Nordst...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Bookending the upcoming Algae Biomass Summit, Sept. 29-Oct.2 in San Diego, will be industry tours to give attendees a first-hand look at the latest progress in technical ...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...