Research

Genome suggests why red alga didn’t come ashore

April 2, 2013
AlgaeIndustryMagazine.com

In the foreground, the red alga, Chondrus crispus  © Jonas Collén

In the foreground, the red alga, Chondrus crispus © Jonas Collén

The first red alga genome has recently been sequenced by an international team, coordinated in France by Le Centre National de la Recherche Scientifique (CNRS) and Pierre-and-Marie-Curie University (UPMC) at the Station Biologique de Roscoff, in Brittany. The project notably involved researchers from the French National Sequencing Centre: CEA-Genoscope, the universities of Lille and Rennes, and the Muséum National d’Histoire Naturelle.

The genome of Chondrus crispus, also known by the Breton name ‘pioka,’ turns out to be small and compact for a multicellular organism. It has fewer genes than several other species of unicellular algae, which raises a number of questions about the evolution of red algae. This low number of genes could explain why these organisms never colonized dry land, unlike their green counterparts – from which all terrestrial plants are descended.

These findings open up new perspectives on the natural history of algae and of terrestrial plants. They were published online in the journal PNAS on March 11, 2013.

Chondrus crispus is a multicellular red alga of about 20 cm in length. It is very common on the rocky coasts of the North Atlantic where it plays an essential role as a primary producer in these ecosystems. Certain red algae are now used in the agri-food industry for the thickening properties of the carrageenans from their cell walls. These sulfated polysaccharides correspond to the food additive E-407, which goes into many desserts and other dishes. Beyond industrial applications, this first sequencing of a red alga genome sheds new light on plant evolution as a whole.

A Chondrus crispus red alga ©Jonas Collén

A Chondrus crispus red alga ©Jonas Collén

The Chondrus genome had some surprises for the researchers. With only 9,606 genes and 105 million base pairs, it is very small for a multicellular organism. By comparison, the unicellular green alga Chlamydomonas reinhardtii has 14,516 genes, the multicellular terrestrial plant Arabadopsis thaliana has 27,416. The Chondrus genome is also very compact, with each function generally corresponding to a single gene. Gene families are small, and genes closely spaced.

To explain these surprising characteristics, the researchers proposed the hypothesis that, more than a billion years ago, red algae experienced a massive loss of genetic material as a result of extreme environmental conditions. This dramatic event in their evolutionary history would have had many consequences. One result could be the loss of flagellar genes, still present in most other organisms and responsible for the motility of certain cells (such as the gametes during sexual reproduction in most organisms, including humans).

Had this massive gene loss never occurred, red algae might have extensively colonized the terrestrial environment, in the same way as green algae, which are the ancestors of all land plants. Yet this event – a real evolutionary bottleneck –has denied red algae the plasticity and genetic potential necessary to adapt to life on land.

The sequence of the Chondrus genome opens the archives of more than 1,500 million years of evolutionary history of terrestrial and marine plants. It provides a new basis for the study of red algae biology and is the first step in a program aiming to improve our understanding of the origins of life on Earth, the adaptation of red algae to their environment and the biosynthesis pathways of biomolecules of interest, such as carrageenans. The scientists of the group are also hoping to discover new enzymes of interest for marine biotechnology.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
The Algae Biomass Organization (ABO) released the following statement calling on the EPA to include Carbon Capture and Utilization strategies in rules proposed June 2, 20...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Following a request from the European Commission, the European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) was recently asked t...
Using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death d...
Portuguese cement facility, Secil, and microalgae biotechnology company, A4F, also based in Portugal, have formed AlgaFarm, a joint venture to develop the use of cement f...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
Analia Murias 
reports for fis.com that Chilean exports of products made from macroalgae generated a total of $195 million US in the first seven months of 2014, according...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...
MicroBio Engineering, Inc., of San Luis Obispo, California, has introduced a full suite of open pond microalgae growth systems designed for quick deployment of research- ...
Renewable fuels company Muradel has launched Australia’s first integrated demonstration plant to sustainably convert algae into green crude, as a first step towards a com...
Hortidaily.com reports that in Nevele, Belgium, Tomalgae is growing algae in a former tomato greenhouse. Their company was formed when tomato cultivation entrepreneurs Pi...
Phys.org reports that, in collaboration with the Berlin, Germany LED manufacturer FutureLED, scientists at the Technische Universität München have developed a unique comb...