Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Fixing the role of nitrogen in coral bleaching

June 6, 2017
AlgaeIndustryMagazine.com

Dr. Claudia Pogoreutz in the King Abdullah University of Science and Technology’s Coastal and Marine Resources Core Lab; the team’s experiments show that corals suffer bleaching after spending time in a sugar-enriched environment even without the influence of heat or light stress. Credit ©2017 Christian Voolstra

Excess nitrogen has shown to disrupt coral-algae symbiosis, triggering bleaching even in the absence of heat and light stress. With coral bleaching events intensifying as global sea temperatures rise, this is an important finding in the race to understand the mechanisms behind bleaching and ways to reduce the devastating impact on coral reefs.

“Corals are remarkably adapted to thrive in the sun-lit, nutrient-poor waters of tropical oceans, mainly thanks to their intimate relationship with microscopic algae,” said Dr. Claudia Pogoreutz of the Red Sea Research Center at King Abdullah University of Science and Technology (KAUST), a private research university located in Thuwal, Saudi Arabia. “In this relationship, corals regulate the algal growth and activity by limiting their access to nitrogen. This ‘blackmailing’ results in algae producing energy-rich sugars, through photosynthesis, for the coral animal.”

Another microbial group – nitrogen-fixing microbes called diazotrophs – may play a key role in maintaining the productivity of the meta-organism by supplementing it with extra nitrogen for metabolism and growth. However, as increasing amounts of waste water, which is full of sugars and nitrogen, are pumped into our oceans, the delicate balance of this nitrogen cycle is in jeopardy. This could in turn exacerbate bleaching events.

The team, led by KAUST Associate Professor of Marine Science Christian Voolstra and in collaboration with scientists from University of Bremen in Germany, took a unique approach to examining how sugar enrichment and nitrogen disruption can contribute to coral bleaching by studying bleaching in the absence of heat and light stress.

“By working out how other environmental factors induce bleaching, we can identify similarities and previously overlooked processes that might explain what happens during bleaching caused by heat stress,” explained KAUST Ph.D. student Nils Rädecker. “Samples from corals were placed in tanks in the KAUST aquaria labs. We added a sugar mixture to some of the tanks while others were kept as controls.”

The sugar-enriched environment fueled the nitrogen-fixing microbes with extra energy, meaning they fixed more nitrogen. This excess nitrogen available to the coral animal upset the balance of nitrogen limitation to the algae, causing the breakdown of coral-algae symbiosis and triggering bleaching.

“This is the first study to highlight the importance of microbial processes like nitrogen fixation for coral health, and how disruptions to these processes may pose a previously unidentified threat under certain conditions,” said Rädecker.

The researchers hope that highlighting the role of nitrogen in bleaching will prompt authorities worldwide to seriously tackle water pollution. While global climate change is undoubtedly the biggest threat to coral reefs, limiting further damage by cleaning up our oceans could help these fragile ecosystems survive.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...
If we built a Green Friendship Bridge composed of 8,600 algae microfarms given to Mexican and Central American farmers in lieu of 1%, (13 miles) of additional border wall...
In New Zealand is an internationally significant collection of microalgae cultures known as the Cawthron Institute Culture Collection of Microalgae (CICCM). The CICCM was...
EPA (eicosapentaenoic acid) fortified eggs are developing quite a demand among middle and upper-class consumers in China. With clinical trials demonstrating that EPA can ...
Global Algae Innovations, with headquarters in San Diego, California, and cultivation/production facilities in Lihue, Hawaii, have introduced a new algae harvesting syste...
Nicolas Sainte-Foie writes for Labiotech.eu about French startup Algopack manufacturing bio-based plastics made from brown algae. Founded by Rémy Lucas in 2010 and manage...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for r...
Sarah Karacs reports for @CNNTech that Japanese firm Euglena has been cultivating a type of algae for use in food and cosmetics. But it sees a range of other potential us...
Suzanne Michaels, writes for the Las Cruces Sun-News that big implications are resulting from what looks like a small algae research project using the City’s wastewater. ...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...