Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Innovations

Fast conversion of algae to biocrude

February 5, 2019
AlgaeIndustryMagazine.com

University of Utah chemical engineering assistant professor Swomitra Mohanty, pictured with beakers of algae, is part of a team that has developed a new kind of jet mixer for turning algae into biomass that extracts the lipids with much less energy than the older extraction method. It is a key discovery that now puts this form of energy closer to becoming a viable, cost-effective alternative fuel. Photo: Dan Hixson/University of Utah College of Engineering

Biofuel experts have long sought a more economically viable way to turn algae into biocrude oil to power vehicles, ships and even jets. University of Utah researchers believe they have found an answer. They have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer.

Microalgae is an attractive form of biomass that can be used as a sustainable fuel source. But the problem with using algae for biomass has always been the amount of energy it takes to extract the lipids. Under current methods, it takes more energy to turn algae into biocrude than the amount of energy you get back out of it.

A team of University of Utah chemical engineers has developed a new kind of jet mixer that extracts the lipids with much less energy than the older extraction method, a key discovery that the researchers say now puts this form of energy closer to becoming a viable, cost-effective alternative fuel. The new mixer is fast, too, extracting lipids in seconds.

The team’s results were published in a new peer-reviewed journal, Chemical Engineering Science X. The article, “Algal Lipid Extraction Using Confined Impinging Jet Mixers,” can be downloaded here.

“The key piece here is trying to get energy parity. We’re not there yet, but this is a really important step toward accomplishing it,” says Leonard Pease, a co-author of the paper. “We have removed a significant development barrier to make algal biofuel production more efficient and smarter. Our method puts us much closer to creating biofuels energy parity than we were before.”

Right now, in order to extract the oil-rich lipids from the algae, scientists have to pull the water from the algae first, leaving either a slurry or dry powder of the biomass. That is the most energy-intensive part of the process. That residue is then mixed with a solvent where the lipids are separated from the biomass. What’s left is a precursor, the biocrude, used to produce algae-based biofuel. That fuel is then mixed with diesel fuel to power long-haul trucks, tractors and other large diesel-powered machinery. But because it requires so much energy to extract the water from the plants at the beginning of the process, turning algae into biofuel has thus far not been a practical, efficient or economical process.

“There have been many laudable research efforts to advance algal biofuel, but nothing has yet produced a price point capable of attracting commercial development. Our designs may change that equation and put algal biofuel back in play,” says University of Utah chemical engineering assistant professor Swomitra “Bobby” Mohanty, a co-author on the paper. Other co-authors are former U chemical engineering doctoral student Yen-Hsun “Robert” Tseng and U chemical engineering associate professor John McLennan.

The team has created a new mixing extractor, a reactor that shoots jets of the solvent at jets of algae, creating a localized turbulence in which the lipids “jump” a short distance into the stream of solvent. The solvent then is taken out and can be recycled to be used again in the process. “Our designs ensure you don’t have to expend all that energy in drying the algae and are much more rapid than competing technologies,” notes Dr. Mohanty.

This technology could also be applied beyond algae and include a variety of microorganisms such as bacteria, fungi, or any microbial-derived oil, says Mohanty.

“This is game-changing,” Dr. Pease says of their work on algae research. “The breakthrough technologies we are creating could drive a revolution in algae and other cell-derived biofuels development. The dream may soon be within reach.”

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
JapanNews.com reports that Euglena Co., a Tokyo-based maker of nutritional supplements, is spending ¥5.8 billion ($5.3 million USD) on building a test refinery that conve...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
Milenio.com reports that BiomiTech, a Mexican company, won a prestigious innovation award for its air purification system at the Contamination Expo Series 2018 held in Bi...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
Mazda U.K. has announced that they are currently involved in joint research projects and studies as part of an ongoing industry-academia-government collaboration to promo...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...